These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23339614)

  • 1. Optimality and saturation in axonal chemotaxis.
    Yuan J; Chan S; Mortimer D; Nguyen H; Goodhill GJ
    Neural Comput; 2013 Apr; 25(4):833-53. PubMed ID: 23339614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian model predicts the response of axons to molecular gradients.
    Mortimer D; Feldner J; Vaughan T; Vetter I; Pujic Z; Rosoff WJ; Burrage K; Dayan P; Richards LJ; Goodhill GJ
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10296-301. PubMed ID: 19541606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients.
    Rosoff WJ; Urbach JS; Esrick MA; McAllister RG; Richards LJ; Goodhill GJ
    Nat Neurosci; 2004 Jun; 7(6):678-82. PubMed ID: 15162167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium and cAMP levels interact to determine attraction versus repulsion in axon guidance.
    Forbes EM; Thompson AW; Yuan J; Goodhill GJ
    Neuron; 2012 May; 74(3):490-503. PubMed ID: 22578501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting axonal response to molecular gradients with a computational model of filopodial dynamics.
    Goodhill GJ; Gu M; Urbach JS
    Neural Comput; 2004 Nov; 16(11):2221-43. PubMed ID: 15476599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual compartment diffusion chamber for studying axonal chemotaxis in 3D collagen.
    Pujic Z; Goodhill GJ
    J Neurosci Methods; 2013 Apr; 215(1):53-9. PubMed ID: 23453927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic nucleotide-dependent switching of mammalian axon guidance depends on gradient steepness.
    Thompson AW; Pujic Z; Richards LJ; Goodhill GJ
    Mol Cell Neurosci; 2011 May; 47(1):45-52. PubMed ID: 21376124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayes-optimal chemotaxis.
    Mortimer D; Dayan P; Burrage K; Goodhill GJ
    Neural Comput; 2011 Feb; 23(2):336-73. PubMed ID: 21105826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model explains saturating axon guidance responses to molecular gradients.
    Nguyen H; Dayan P; Pujic Z; Cooper-White J; Goodhill GJ
    Elife; 2016 Feb; 5():e12248. PubMed ID: 26830461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of gradient detection by growth cones.
    Goodhill GJ; Urbach JS
    J Neurobiol; 1999 Nov; 41(2):230-41. PubMed ID: 10512980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth cone chemotaxis.
    Mortimer D; Fothergill T; Pujic Z; Richards LJ; Goodhill GJ
    Trends Neurosci; 2008 Feb; 31(2):90-8. PubMed ID: 18201774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation is not required to explain the long-term response of axons to molecular gradients.
    Xu J; Rosoff WJ; Urbach JS; Goodhill GJ
    Development; 2005 Oct; 132(20):4545-52. PubMed ID: 16176951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide.
    Adams DN; Kao EY; Hypolite CL; Distefano MD; Hu WS; Letourneau PC
    J Neurobiol; 2005 Jan; 62(1):134-47. PubMed ID: 15452851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation in the chemotactic guidance of nerve growth cones.
    Ming GL; Wong ST; Henley J; Yuan XB; Song HJ; Spitzer NC; Poo MM
    Nature; 2002 May; 417(6887):411-8. PubMed ID: 11986620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis.
    Alsmadi NZ; Patil LS; Hor EM; Lofti P; Razal JM; Chuong CJ; Wallace GG; Romero-Ortega MI
    Brain Res; 2015 Sep; 1619():72-83. PubMed ID: 25801117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid computational model to predict chemotactic guidance of growth cones.
    Roccasalvo IM; Micera S; Sergi PN
    Sci Rep; 2015 Jun; 5():11340. PubMed ID: 26086936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules.
    Rosentreter SM; Davenport RW; Löschinger J; Huf J; Jung J; Bonhoeffer F
    J Neurobiol; 1998 Dec; 37(4):541-62. PubMed ID: 9858257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient steepness influences the pathfinding decisions of neuronal growth cones in vivo.
    Isbister CM; Mackenzie PJ; To KC; O'Connor TP
    J Neurosci; 2003 Jan; 23(1):193-202. PubMed ID: 12514216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanism for the polarity formation of chemoreceptors at the growth cone membrane for gradient amplification during directional sensing.
    Bouzigues C; Holcman D; Dahan M
    PLoS One; 2010 Feb; 5(2):e9243. PubMed ID: 20179770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging.
    Bouzigues C; Morel M; Triller A; Dahan M
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11251-6. PubMed ID: 17592112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.