These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 23339617)
1. Double-gabor filters are independent components of small translation-invariant image patches. Saremi S; Sejnowski TJ; Sharpee TO Neural Comput; 2013 Apr; 25(4):922-39. PubMed ID: 23339617 [TBL] [Abstract][Full Text] [Related]
2. The "independent components" of natural scenes are edge filters. Bell AJ; Sejnowski TJ Vision Res; 1997 Dec; 37(23):3327-38. PubMed ID: 9425547 [TBL] [Abstract][Full Text] [Related]
3. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. van Hateren JH; Ruderman DL Proc Biol Sci; 1998 Dec; 265(1412):2315-20. PubMed ID: 9881476 [TBL] [Abstract][Full Text] [Related]
4. Signal-tuned Gabor functions as models for stimulus-dependent cortical receptive fields. Torreão JR; Victer SM; Amaral MS Neural Comput; 2014 May; 26(5):920-52. PubMed ID: 24555452 [TBL] [Abstract][Full Text] [Related]
5. A differential model of the complex cell. Hansard M; Horaud R Neural Comput; 2011 Sep; 23(9):2324-57. PubMed ID: 21671791 [TBL] [Abstract][Full Text] [Related]
6. Neural computation of visual imaging based on Kronecker product in the primary visual cortex. Songnian Z; Qi Z; Zhen J; Guozheng Y; Li Y BMC Neurosci; 2010 Mar; 11():43. PubMed ID: 20346118 [TBL] [Abstract][Full Text] [Related]
7. Is sparse and distributed the coding goal of simple cells? Zhao L Biol Cybern; 2004 Dec; 91(6):408-16. PubMed ID: 15597179 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Jones JP; Palmer LA J Neurophysiol; 1987 Dec; 58(6):1233-58. PubMed ID: 3437332 [TBL] [Abstract][Full Text] [Related]
9. Color-opponent receptive fields derived from independent component analysis of natural images. Tailor DR; Finkel LH; Buchsbaum G Vision Res; 2000; 40(19):2671-6. PubMed ID: 10958917 [TBL] [Abstract][Full Text] [Related]
12. Independent component filters of natural images compared with simple cells in primary visual cortex. van Hateren JH; van der Schaaf A Proc Biol Sci; 1998 Mar; 265(1394):359-66. PubMed ID: 9523437 [TBL] [Abstract][Full Text] [Related]
14. Orientation Tuning Depends on Spatial Frequency in Mouse Visual Cortex. Ayzenshtat I; Jackson J; Yuste R eNeuro; 2016; 3(5):. PubMed ID: 27699210 [TBL] [Abstract][Full Text] [Related]
15. Properties of basis functions generated by shift invariant sparse representations of natural images. Hashimoto W; Kurata K Biol Cybern; 2000 Aug; 83(2):111-8. PubMed ID: 10966050 [TBL] [Abstract][Full Text] [Related]
16. Adaptation of the simple or complex nature of V1 receptive fields to visual statistics. Fournier J; Monier C; Pananceau M; Frégnac Y Nat Neurosci; 2011 Jul; 14(8):1053-60. PubMed ID: 21765424 [TBL] [Abstract][Full Text] [Related]
17. A neural network model for texture discrimination. Xing J; Gerstein GL Biol Cybern; 1993; 69(2):97-108. PubMed ID: 8373889 [TBL] [Abstract][Full Text] [Related]
18. Receptive field self-organization in a model of the fine structure in v1 cortical columns. Lücke J Neural Comput; 2009 Oct; 21(10):2805-45. PubMed ID: 19548804 [TBL] [Abstract][Full Text] [Related]
19. A model of human pattern perception: association fields for adaptive spatial filters. Meese TS Spat Vis; 1999; 12(3):363-94. PubMed ID: 10442519 [TBL] [Abstract][Full Text] [Related]
20. Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Hyvärinen A; Hoyer P Neural Comput; 2000 Jul; 12(7):1705-20. PubMed ID: 10935923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]