These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Novo MT; Beltran G; Torija MJ; Poblet M; Rozès N; Guillamón JM; Mas A Int J Food Microbiol; 2003 Sep; 86(1-2):153-61. PubMed ID: 12892930 [TBL] [Abstract][Full Text] [Related]
63. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism. Alexandre H Int J Food Microbiol; 2013 Oct; 167(2):269-75. PubMed ID: 24141073 [TBL] [Abstract][Full Text] [Related]
64. The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains. Vendramini C; Beltran G; Nadai C; Giacomini A; Mas A; Corich V Int J Food Microbiol; 2017 Oct; 258():1-11. PubMed ID: 28735228 [TBL] [Abstract][Full Text] [Related]
66. Lipid nutrition of Saccharomyces cerevisiae in winemaking. Belviso S; Bardi L; Bartolini AB; Marzona M Can J Microbiol; 2004 Sep; 50(9):669-74. PubMed ID: 15644919 [TBL] [Abstract][Full Text] [Related]
67. Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. Marullo P; Mansour C; Dufour M; Albertin W; Sicard D; Bely M; Dubourdieu D FEMS Yeast Res; 2009 Dec; 9(8):1148-60. PubMed ID: 19758333 [TBL] [Abstract][Full Text] [Related]
68. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Leão C; Mendes-Faia A; Pérez-Ortín JE Appl Environ Microbiol; 2007 Aug; 73(16):5363-9. PubMed ID: 17601813 [TBL] [Abstract][Full Text] [Related]
69. Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. Mendes I; Sanchez I; Franco-Duarte R; Camarasa C; Schuller D; Dequin S; Sousa MJ BMC Genomics; 2017 Jun; 18(1):455. PubMed ID: 28595605 [TBL] [Abstract][Full Text] [Related]
70. Expression of stress response genes in wine strains with different fermentative behavior. Zuzuarregui A; del Olmo ML FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773 [TBL] [Abstract][Full Text] [Related]
71. Direct stamp of technology or origin on the genotypic and phenotypic variation of indigenous Saccharomyces cerevisiae population in a natural model of boiled grape juice fermentation into traditional Msalais wine in China. Zhu LX; Wang GQ; Xue JL; Gou DQ; Duan CQ FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 27993913 [TBL] [Abstract][Full Text] [Related]
73. Extremely low temperature fermentations of grape must by potato-supported yeast, strain AXAZ-1. A contribution is performed for catalysis of alcoholic fermentation. Kandylis P; Koutinas AA J Agric Food Chem; 2008 May; 56(9):3317-27. PubMed ID: 18422329 [TBL] [Abstract][Full Text] [Related]
74. Release of cell wall polysaccharides from Saccharomyces cerevisiae thermosensitive autolytic mutants during alcoholic fermentation. Giovani G; Rosi I Int J Food Microbiol; 2007 May; 116(1):19-24. PubMed ID: 17336415 [TBL] [Abstract][Full Text] [Related]
76. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
77. Co-inoculation of different Saccharomyces cerevisiae strains and influence on volatile composition of wines. Barrajón N; Capece A; Arévalo-Villena M; Briones A; Romano P Food Microbiol; 2011 Aug; 28(5):1080-6. PubMed ID: 21569955 [TBL] [Abstract][Full Text] [Related]
78. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Molina AM; Swiegers JH; Varela C; Pretorius IS; Agosin E Appl Microbiol Biotechnol; 2007 Dec; 77(3):675-87. PubMed ID: 17938912 [TBL] [Abstract][Full Text] [Related]
79. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Wu D; Li X; Shen C; Lu J; Chen J; Xie G Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164 [TBL] [Abstract][Full Text] [Related]
80. Fermentation temperature modulates phosphatidylethanolamine and phosphatidylinositol levels in the cell membrane of Saccharomyces cerevisiae. Henderson CM; Zeno WF; Lerno LA; Longo ML; Block DE Appl Environ Microbiol; 2013 Sep; 79(17):5345-56. PubMed ID: 23811519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]