These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23340385)
81. Combined effect of the Saccharomyces cerevisiae lag phase and the non-Saccharomyces consortium to enhance wine fruitiness and complexity. Albertin W; Zimmer A; Miot-Sertier C; Bernard M; Coulon J; Moine V; Colonna-Ceccaldi B; Bely M; Marullo P; Masneuf-Pomarede I Appl Microbiol Biotechnol; 2017 Oct; 101(20):7603-7620. PubMed ID: 28913648 [TBL] [Abstract][Full Text] [Related]
82. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures. Paget CM; Schwartz JM; Delneri D Mol Ecol; 2014 Nov; 23(21):5241-57. PubMed ID: 25243355 [TBL] [Abstract][Full Text] [Related]
83. Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. Gutiérrez A; Beltran G; Warringer J; Guillamón JM PLoS One; 2013; 8(6):e67166. PubMed ID: 23826223 [TBL] [Abstract][Full Text] [Related]
84. Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. García-Ríos E; Alonso-Del-Real J; Lip KYF; Pinheiro T; Teixeira J; van Gulik W; Domingues L; Querol A; Guillamón JM Genomics; 2022 Jul; 114(4):110386. PubMed ID: 35569731 [TBL] [Abstract][Full Text] [Related]
85. Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. García-Ríos E; Lairón-Peris M; Muñiz-Calvo S; Heras JM; Ortiz-Julien A; Poirot P; Rozès N; Querol A; Guillamón JM Int J Food Microbiol; 2021 Mar; 342():109077. PubMed ID: 33550155 [TBL] [Abstract][Full Text] [Related]
86. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Pinheiro T; Lip KYF; García-Ríos E; Querol A; Teixeira J; van Gulik W; Guillamón JM; Domingues L Sci Rep; 2020 Dec; 10(1):22329. PubMed ID: 33339840 [TBL] [Abstract][Full Text] [Related]
87. Computational models for prediction of yeast strain potential for winemaking from phenotypic profiles. Mendes I; Franco-Duarte R; Umek L; Fonseca E; Drumonde-Neves J; Dequin S; Zupan B; Schuller D PLoS One; 2013; 8(7):e66523. PubMed ID: 23874393 [TBL] [Abstract][Full Text] [Related]
88. Relief from nitrogen starvation entails quick unexpected down-regulation of glycolytic/lipid metabolism genes in enological Saccharomyces cerevisiae. Tesnière C; Bessière C; Pradal M; Sanchez I; Blondin B; Bigey F PLoS One; 2019; 14(4):e0215870. PubMed ID: 31022239 [TBL] [Abstract][Full Text] [Related]
89. The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae. Baudry K; Swain E; Rahier A; Germann M; Batta A; Rondet S; Mandala S; Henry K; Tint GS; Edlind T; Kurtz M; Nickels JT J Biol Chem; 2001 Apr; 276(16):12702-11. PubMed ID: 11279045 [TBL] [Abstract][Full Text] [Related]
90. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids. Qie L; Nagiec MM; Baltisberger JA; Lester RL; Dickson RC J Biol Chem; 1997 Jun; 272(26):16110-7. PubMed ID: 9195906 [TBL] [Abstract][Full Text] [Related]
91. Deletion of ORM2 Causes Oleic Acid-Induced Growth Defects in Saccharomyces cerevisiae. Mathivanan A; Nachiappan V Appl Biochem Biotechnol; 2023 Oct; 195(10):5916-5932. PubMed ID: 36719521 [TBL] [Abstract][Full Text] [Related]
92. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism. Gsell M; Fankl A; Klug L; Mascher G; Schmidt C; Hrastnik C; Zellnig G; Daum G PLoS One; 2015; 10(9):e0136957. PubMed ID: 26327557 [TBL] [Abstract][Full Text] [Related]
93. Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae. Mitrofanova D; Dakik P; McAuley M; Medkour Y; Mohammad K; Titorenko VI Front Biosci (Landmark Ed); 2018 Jan; 23(6):1166-1194. PubMed ID: 28930594 [TBL] [Abstract][Full Text] [Related]
94. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids. Wells GB; Lester RL J Biol Chem; 1983 Sep; 258(17):10200-3. PubMed ID: 6350287 [TBL] [Abstract][Full Text] [Related]
95. Changes in the lipid content during cell division of Saccharomyces cerevisiae. Cejková A; Jirků V Folia Microbiol (Praha); 1978; 23(5):372-5. PubMed ID: 359435 [TBL] [Abstract][Full Text] [Related]
96. Effect of yeast hulls on stuck and sluggish wine fermentations: importance of the lipid component. Munoz E; Ingledew WM Appl Environ Microbiol; 1989 Jun; 55(6):1560-4. PubMed ID: 16347950 [TBL] [Abstract][Full Text] [Related]
97. Low temperature promotes the production and efflux of terpenoids in yeast. Qin L; Ma D; Lin G; Sun W; Li C Bioresour Technol; 2024 Mar; 395():130376. PubMed ID: 38278452 [TBL] [Abstract][Full Text] [Related]
98. Random phenotypic variation of yeast (Saccharomyces cerevisiae) single-gene knockouts fits a double pareto-lognormal distribution. Graham JH; Robb DT; Poe AR PLoS One; 2012; 7(11):e48964. PubMed ID: 23139826 [TBL] [Abstract][Full Text] [Related]
99. Benzoquinone alters the lipid homeostasis in Raj A; Nachiappan V Toxicol Res (Camb); 2019 Nov; 8(6):1035-1041. PubMed ID: 32190295 [No Abstract] [Full Text] [Related]
100. ICT1 deficiency leads to reduced oxygen resistance due to the cell wall damage in S. cerevisiae. Zhu H; Wang M; Zhou H; Cai H Genes Genomics; 2022 Aug; 44(8):913-922. PubMed ID: 35094287 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]