These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23340452)

  • 21. Comparison of field-observed and model-predicted plume trends at fuel-contaminated sites: implications for natural attenuation rates.
    Jeong SW; Kampbell DH; An YJ; Henry BM
    J Environ Monit; 2005 Nov; 7(11):1099-104. PubMed ID: 16252060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methane production and isotopic fingerprinting in ethanol fuel contaminated sites.
    Freitas JG; Fletcher B; Aravena R; Barker JF
    Ground Water; 2010; 48(6):844-57. PubMed ID: 20070380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic degradation of BTEX in a packed-bed reactor.
    de Nardi IR; Varesche MB; Zaiat M; Foresti E
    Water Sci Technol; 2002; 45(10):175-80. PubMed ID: 12188540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow field dynamics and high ethanol content in gasohol blends enhance BTEX migration and biodegradation in groundwater.
    Rama F; Ramos DT; Müller JB; Corseuil HX; Miotliński K
    J Contam Hydrol; 2019 Apr; 222():17-30. PubMed ID: 30797547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer.
    Berlendis S; Lascourreges JF; Schraauwers B; Sivadon P; Magot M
    Environ Sci Technol; 2010 May; 44(9):3621-8. PubMed ID: 20380433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial degradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) contaminated groundwater in Korea.
    Chang SW; La HJ; Lee SJ
    Water Sci Technol; 2001; 44(7):165-71. PubMed ID: 11724483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of BTEX degradation in a packed-bed anaerobic reactor.
    deNardi IR; Zaiat M; Foresti E
    Biodegradation; 2007 Feb; 18(1):83-90. PubMed ID: 16400525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures.
    Steinbusch KJ; Hamelers HV; Buisman CJ
    Water Res; 2008 Sep; 42(15):4059-66. PubMed ID: 18725163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.
    Ho L; Ho G
    Water Res; 2012 Sep; 46(14):4339-50. PubMed ID: 22739499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation.
    Steinbusch KJ; Arvaniti E; Hamelers HV; Buisman CJ
    Bioresour Technol; 2009 Jul; 100(13):3261-7. PubMed ID: 19297147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater.
    Cozzarelli IM; Bekins BA; Eganhouse RP; Warren E; Essaid HI
    J Contam Hydrol; 2010 Jan; 111(1-4):48-64. PubMed ID: 20060615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular damages in the Allium cepa test system, caused by BTEX mixture prior and after biodegradation process.
    Mazzeo DE; Fernandes TC; Marin-Morales MA
    Chemosphere; 2011 Sep; 85(1):13-8. PubMed ID: 21741065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments.
    Lovanh N; Hunt CS; Alvarez PJ
    Water Res; 2002 Sep; 36(15):3739-46. PubMed ID: 12369521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead.
    Xin BP; Wu CH; Wu CH; Lin CW
    J Hazard Mater; 2013 Jan; 244-245():765-72. PubMed ID: 23200621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.
    Schreiber ME; Carey GR; Feinstein DT; Bahr JM
    J Contam Hydrol; 2004 Sep; 73(1-4):99-127. PubMed ID: 15336791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors.
    Villatoro-Monzón WR; Mesta-Howard AM; Razo-Flores E
    Water Sci Technol; 2003; 48(6):125-31. PubMed ID: 14640209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.
    Deeb RA; Alvarez-Cohen L
    Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Acetate production by acidification-homoacetogenesis two-phase coupling process: effect of initial pH].
    Nie YQ; Liu H; Du GC; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):686-91. PubMed ID: 17822045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Methanobrevibacter acididurans in anaerobic digestion.
    Savant DV; Ranade DR
    Water Sci Technol; 2004; 50(6):109-14. PubMed ID: 15536997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously.
    Kyazze G; Dinsdale R; Guwy AJ; Hawkes FR; Premier GC; Hawkes DL
    Biotechnol Bioeng; 2007 Jul; 97(4):759-70. PubMed ID: 17163512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.