These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 23340517)
1. Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons. Qu LL; Li YT; Li DW; Xue JQ; Fossey JS; Long YT Analyst; 2013 Mar; 138(5):1523-8. PubMed ID: 23340517 [TBL] [Abstract][Full Text] [Related]
2. Surface enhanced Raman spectroscopy hyphenated with surface microextraction for in-situ detection of polycyclic aromatic hydrocarbons on food contact materials. Zhang M; Zhang X; Shi YE; Liu Z; Zhan J Talanta; 2016 Sep; 158():322-329. PubMed ID: 27343612 [TBL] [Abstract][Full Text] [Related]
3. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO Zhou W; Yin BC; Ye BC Biosens Bioelectron; 2017 Jan; 87():187-194. PubMed ID: 27551999 [TBL] [Abstract][Full Text] [Related]
4. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Liu C; Zhang X; Li L; Cui J; Shi YE; Wang L; Zhan J Analyst; 2015 Jul; 140(13):4668-75. PubMed ID: 25988666 [TBL] [Abstract][Full Text] [Related]
5. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591 [TBL] [Abstract][Full Text] [Related]
6. Analysis of polycyclic aromatic hydrocarbons in water with gold nanoparticles decorated hydrophobic porous polymer as surface-enhanced Raman spectroscopy substrate. Wang X; Hao W; Zhang H; Pan Y; Kang Y; Zhang X; Zou M; Tong P; Du Y Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():214-21. PubMed ID: 25561300 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous and rapid determination of polycyclic aromatic hydrocarbons by facile and green synthesis of silver nanoparticles as effective SERS substrate. Li M; Yu H; Cheng Y; Guo Y; Yao W; Xie Y Ecotoxicol Environ Saf; 2020 Sep; 200():110780. PubMed ID: 32470683 [TBL] [Abstract][Full Text] [Related]
8. Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction. Zheng C; Zhang L; Wang F; Cai Y; Du S; Zhang Z Talanta; 2018 Oct; 188():630-636. PubMed ID: 30029423 [TBL] [Abstract][Full Text] [Related]
9. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
11. Halogen ion-modified silver nanoparticles for ultrasensitive surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Wang D; Zhu J; Hui B; Gong Z; Fan M Luminescence; 2022 Sep; 37(9):1541-1546. PubMed ID: 35816184 [TBL] [Abstract][Full Text] [Related]
12. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006 [TBL] [Abstract][Full Text] [Related]
14. The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea). Pfannkuche J; Lubecki L; Schmidt H; Kowalewska G; Kronfeldt HD Mar Pollut Bull; 2012 Mar; 64(3):614-26. PubMed ID: 22248648 [TBL] [Abstract][Full Text] [Related]
15. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Ren W; Zhu C; Wang E Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096 [TBL] [Abstract][Full Text] [Related]
16. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Zhang L; Gong X; Bao Y; Zhao Y; Xi M; Jiang C; Fong H Langmuir; 2012 Oct; 28(40):14433-40. PubMed ID: 22974488 [TBL] [Abstract][Full Text] [Related]
17. Syntheses and characterization of nearly monodispersed, size-tunable silver nanoparticles over a wide size range of 7-200 nm by tannic acid reduction. Cao Y; Zheng R; Ji X; Liu H; Xie R; Yang W Langmuir; 2014 Apr; 30(13):3876-82. PubMed ID: 24628127 [TBL] [Abstract][Full Text] [Related]
18. Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Wang X; Xu Q; Hu X; Han F; Zhu C Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117783. PubMed ID: 31753660 [TBL] [Abstract][Full Text] [Related]
19. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides. Li P; Dong R; Wu Y; Liu H; Kong L; Yang L Talanta; 2014 Sep; 127():269-75. PubMed ID: 24913887 [TBL] [Abstract][Full Text] [Related]
20. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Fan M; Brolo AG Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]