These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23340524)

  • 1. Palladium nanoparticles supported on nitrogen-doped HOPG: a surface science and electrochemical study.
    Favaro M; Agnoli S; Perini L; Durante C; Gennaro A; Granozzi G
    Phys Chem Chem Phys; 2013 Feb; 15(8):2923-31. PubMed ID: 23340524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium nanostructures and nanoparticles from molecular precursors on highly ordered pyrolytic graphite.
    Díaz-Ayala R; Fachini ER; Raptis R; Cabrera CR
    Langmuir; 2006 Nov; 22(24):10185-95. PubMed ID: 17107020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instrumental effects on in situ electrochemical STM studies: an investigation of a current surge induced Pd deposit on HOPG.
    Tong XQ; Aindow M; Farr JP
    Microsc Res Tech; 1996 May; 34(1):87-95. PubMed ID: 8859892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis.
    Song Z; Cai T; Hanson JC; Rodriguez JA; Hrbek J
    J Am Chem Soc; 2004 Jul; 126(27):8576-84. PubMed ID: 15238017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model Catalysis with HOPG-Supported Pd Nanoparticles and Pd Foil: XPS, STM and C
    Motin MA; Steiger-Thirsfeld A; Stöger-Pollach M; Rupprechter G
    Catal Letters; 2022; 152(10):2892-2907. PubMed ID: 36196216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium nanoshell catalysts synthesis on highly ordered pyrolytic graphite for oxygen reduction reaction.
    Arroyo-Ramírez L; Rodríguez D; Otaño W; Cabrera CR
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2018-24. PubMed ID: 22360356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering.
    Kiuchi H; Kondo T; Sakurai M; Guo D; Nakamura J; Niwa H; Miyawaki J; Kawai M; Oshima M; Harada Y
    Phys Chem Chem Phys; 2016 Jan; 18(1):458-65. PubMed ID: 26615959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal reduction of Pd molecular cluster precursors at highly ordered pyrolytic graphite surfaces.
    Díaz-Ayala R; Arroyo L; Raptis R; Cabrera CR
    Langmuir; 2004 Sep; 20(19):8329-35. PubMed ID: 15350110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of evaporated nickel nanoparticles with highly oriented pyrolytic graphite: Back-bonding to surface defects, as studied by X-ray photoelectron spectroscopy.
    Yang DQ; Sacher E
    J Phys Chem B; 2005 Oct; 109(41):19329-34. PubMed ID: 16853496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite.
    Zhang G; Sun S; Bostetter M; Poulin S; Sacher E
    J Colloid Interface Sci; 2010 Oct; 350(1):16-21. PubMed ID: 20650466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodeposition of platinum on highly oriented pyrolytic graphite. Part I: electrochemical characterization.
    Lu G; Zangari G
    J Phys Chem B; 2005 Apr; 109(16):7998-8007. PubMed ID: 16851935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new view of electrochemistry at highly oriented pyrolytic graphite.
    Patel AN; Collignon MG; O'Connell MA; Hung WO; McKelvey K; Macpherson JV; Unwin PR
    J Am Chem Soc; 2012 Dec; 134(49):20117-30. PubMed ID: 23145936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic activity of platinum nanoparticles on highly boron-doped and 100-oriented epitaxial diamond towards HER and HOR.
    Brülle T; Denisenko A; Sternschulte H; Stimming U
    Phys Chem Chem Phys; 2011 Jul; 13(28):12883-91. PubMed ID: 21687867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG.
    Taing J; Cheng MH; Hemminger JC
    ACS Nano; 2011 Aug; 5(8):6325-33. PubMed ID: 21790177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of halide-modified model carbon supports on catalyst stability.
    Wood KN; Pylypenko S; Olson TS; Dameron AA; O'Neill K; Christensen ST; Dinh HN; Gennett T; O'Hayre R
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6728-34. PubMed ID: 23194033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles study of doped carbon supports for enhanced platinum catalysts.
    Holme T; Zhou Y; Pasquarelli R; O'Hayre R
    Phys Chem Chem Phys; 2010 Aug; 12(32):9461-8. PubMed ID: 20571681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile in situ characterization of gold nanoparticles on electrode surfaces by electrochemical techniques: average size, number density and morphology determination.
    Wang Y; Laborda E; Salter C; Crossley A; Compton RG
    Analyst; 2012 Oct; 137(20):4693-7. PubMed ID: 22946092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.