BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23340741)

  • 1. CD133 glycosylation is enhanced by hypoxia in cultured glioma stem cells.
    Lehnus KS; Donovan LK; Huang X; Zhao N; Warr TJ; Pilkington GJ; An Q
    Int J Oncol; 2013 Mar; 42(3):1011-7. PubMed ID: 23340741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha.
    Soeda A; Park M; Lee D; Mintz A; Androutsellis-Theotokis A; McKay RD; Engh J; Iwama T; Kunisada T; Kassam AB; Pollack IF; Park DM
    Oncogene; 2009 Nov; 28(45):3949-59. PubMed ID: 19718046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.
    Barrantes-Freer A; Renovanz M; Eich M; Braukmann A; Sprang B; Spirin P; Pardo LA; Giese A; Kim EL
    PLoS One; 2015; 10(6):e0130519. PubMed ID: 26086074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia promotes radioresistance of CD133-positive Hep-2 human laryngeal squamous carcinoma cells in vitro.
    Wang M; Li X; Qu Y; Xu O; Sun Q
    Int J Oncol; 2013 Jul; 43(1):131-40. PubMed ID: 23652853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.
    Kemper K; Sprick MR; de Bree M; Scopelliti A; Vermeulen L; Hoek M; Zeilstra J; Pals ST; Mehmet H; Stassi G; Medema JP
    Cancer Res; 2010 Jan; 70(2):719-29. PubMed ID: 20068153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chemoresistance of CD133(+) tumor stem cells from human brain glioma].
    Bi CL; Fang JS; Chen FH; Wang YJ; Wu J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Aug; 32(4):568-73. PubMed ID: 17767043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limits of CD133 as a marker of glioma self-renewing cells.
    Clément V; Dutoit V; Marino D; Dietrich PY; Radovanovic I
    Int J Cancer; 2009 Jul; 125(1):244-8. PubMed ID: 19350631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment.
    Song YJ; Zhang SS; Guo XL; Sun K; Han ZP; Li R; Zhao QD; Deng WJ; Xie XQ; Zhang JW; Wu MC; Wei LX
    Cancer Lett; 2013 Oct; 339(1):70-81. PubMed ID: 23879969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD133 is a marker of bioenergetic stress in human glioma.
    Griguer CE; Oliva CR; Gobin E; Marcorelles P; Benos DJ; Lancaster JR; Gillespie GY
    PLoS One; 2008; 3(11):e3655. PubMed ID: 18985161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glioblastoma cells negative for the anti-CD133 antibody AC133 express a truncated variant of the CD133 protein.
    Osmond TL; Broadley KW; McConnell MJ
    Int J Mol Med; 2010 Jun; 25(6):883-8. PubMed ID: 20428792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastic induction of CD133AC133-positive cells in the microenvironment of glioblastoma spheroids.
    Ohnishi K; Tani T; Bando S; Kubota N; Fujii Y; Hatano O; Harada H
    Int J Oncol; 2014 Aug; 45(2):581-6. PubMed ID: 24897999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the complex regulation of CD133 in glioma.
    Campos B; Herold-Mende CC
    Int J Cancer; 2011 Feb; 128(3):501-10. PubMed ID: 20853315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to hypoxia-induced, BNIP3-mediated cell death contributes to an increase in a CD133-positive cell population in human glioblastomas in vitro.
    Kahlert UD; Maciaczyk D; Dai F; Claus R; Firat E; Doostkam S; Bogiel T; Carro MS; Döbrössy M; Herold-Mende C; Niedermann G; Prinz M; Nikkhah G; Maciaczyk J
    J Neuropathol Exp Neurol; 2012 Dec; 71(12):1086-99. PubMed ID: 23147506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD133 is essential for glioblastoma stem cell maintenance.
    Brescia P; Ortensi B; Fornasari L; Levi D; Broggi G; Pelicci G
    Stem Cells; 2013 May; 31(5):857-69. PubMed ID: 23307586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57.
    Zhu X; Prasad S; Gaedicke S; Hettich M; Firat E; Niedermann G
    Oncotarget; 2015 Jan; 6(1):171-84. PubMed ID: 25426558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling.
    Annabi B; Lachambre MP; Plouffe K; Sartelet H; Béliveau R
    Mol Carcinog; 2009 Oct; 48(10):910-9. PubMed ID: 19326372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presence of pluripotent CD133+ cells correlates with malignancy of gliomas.
    Thon N; Damianoff K; Hegermann J; Grau S; Krebs B; Schnell O; Tonn JC; Goldbrunner R
    Mol Cell Neurosci; 2010 Jan; 43(1):51-9. PubMed ID: 18761091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells.
    Bidlingmaier S; Zhu X; Liu B
    J Mol Med (Berl); 2008 Sep; 86(9):1025-32. PubMed ID: 18535813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia promotes stem-like properties of laryngeal cancer cell lines by increasing the CD133+ stem cell fraction.
    Wu CP; Du HD; Gong HL; Li DW; Tao L; Tian J; Zhou L
    Int J Oncol; 2014 May; 44(5):1652-60. PubMed ID: 24573690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression.
    Gambelli F; Sasdelli F; Manini I; Gambarana C; Oliveri G; Miracco C; Sorrentino V
    Cell Biol Int; 2012 Jan; 36(1):29-38. PubMed ID: 21916848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.