These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23340906)

  • 41. Separation of proteins using a novel two-depth miniaturized free-flow electrophoresis device with multiple outlet fractionation channels.
    Becker M; Marggraf U; Janasek D
    J Chromatogr A; 2009 Nov; 1216(47):8265-9. PubMed ID: 19631324
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analytical methods for separating and isolating magnetic nanoparticles.
    Stephens JR; Beveridge JS; Williams ME
    Phys Chem Chem Phys; 2012 Mar; 14(10):3280-9. PubMed ID: 22306911
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photocurable pickering emulsion for colloidal particles with structural complexity.
    Kim SH; Yi GR; Kim KH; Yang SM
    Langmuir; 2008 Mar; 24(6):2365-71. PubMed ID: 18237213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Size selective assembly of colloidal particles on a template by directed self-assembly technique.
    Varghese B; Cheong FC; Sindhu S; Yu T; Lim CT; Valiyaveettil S; Sow CH
    Langmuir; 2006 Sep; 22(19):8248-52. PubMed ID: 16952269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations.
    Vahey MD; Voldman J
    Lab Chip; 2011 Jun; 11(12):2071-80. PubMed ID: 21541439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical differential mobility analyzer for micron size colloidal particles: theoretical approach.
    Kim SB; Song DK; Kim SS
    J Colloid Interface Sci; 2007 Jul; 311(1):102-9. PubMed ID: 17383672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial ordering of colloids in a drying aqueous polymer droplet.
    Senses E; Black M; Cunningham T; Sukhishvili SA; Akcora P
    Langmuir; 2013 Feb; 29(8):2588-94. PubMed ID: 23360324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measuring reaction rates on single particles in a microfluidic device.
    Caulum MM; Henry CS
    Lab Chip; 2008 Jun; 8(6):865-7. PubMed ID: 18497903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures.
    Wu HW; Lin XZ; Hwang SM; Lee GB
    Biomed Microdevices; 2009 Dec; 11(6):1297-307. PubMed ID: 19731039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae.
    Tian J; Jin J; Zheng F; Zhao H
    Langmuir; 2010 Jun; 26(11):8762-8. PubMed ID: 20085341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.