BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23341005)

  • 21. Synchrotron-based mass spectrometry to investigate the molecular properties of mineral-organic associations.
    Liu SY; Kleber M; Takahashi LK; Nico P; Keiluweit M; Ahmed M
    Anal Chem; 2013 Jun; 85(12):6100-6. PubMed ID: 23675904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vienna soil organic matter modeler 2 (VSOMM2).
    Escalona Y; Petrov D; Oostenbrink C
    J Mol Graph Model; 2021 Mar; 103():107817. PubMed ID: 33291027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry.
    Mangal V; Stock NL; Guéguen C
    Anal Bioanal Chem; 2016 Mar; 408(7):1891-900. PubMed ID: 26781103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular-level methods for monitoring soil organic matter responses to global climate change.
    Feng X; Simpson MJ
    J Environ Monit; 2011 May; 13(5):1246-54. PubMed ID: 21416081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and comparison of formula assignment algorithms for ultrahigh-resolution mass spectra of natural organic matter.
    Fu QL; Fujii M; Riedel T
    Anal Chim Acta; 2020 Aug; 1125():247-257. PubMed ID: 32674771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two- and three-dimensional van krevelen diagrams: a graphical analysis complementary to the kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband fourier transform ion cyclotron resonance mass measurements.
    Wu Z; Rodgers RP; Marshall AG
    Anal Chem; 2004 May; 76(9):2511-6. PubMed ID: 15117191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel software for data analysis of Fourier transform ion cyclotron resonance mass spectra applied to natural organic matter.
    Grinhut T; Lansky D; Gaspar A; Hertkorn N; Schmitt-Kopplin P; Hadar Y; Chen Y
    Rapid Commun Mass Spectrom; 2010 Oct; 24(19):2831-7. PubMed ID: 20857442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soil-specific response functions of organic matter mineralization to the availability of labile carbon.
    Paterson E; Sim A
    Glob Chang Biol; 2013 May; 19(5):1562-71. PubMed ID: 23505211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MFAssignR: Molecular formula assignment software for ultrahigh resolution mass spectrometry analysis of environmental complex mixtures.
    Schum SK; Brown LE; Mazzoleni LR
    Environ Res; 2020 Dec; 191():110114. PubMed ID: 32866496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular composition and biodegradability of soil organic matter: a case study comparing two new England forest types.
    Ohno T; Parr TB; Gruselle MC; Fernandez IJ; Sleighter RL; Hatcher PG
    Environ Sci Technol; 2014 Jul; 48(13):7229-36. PubMed ID: 24912044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties.
    Zbytniewski R; Buszewski B
    Bioresour Technol; 2005 Mar; 96(4):471-8. PubMed ID: 15491829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of organic matter on sorption and fate of glyphosate in soil--comparing different soils and humic substances.
    Albers CN; Banta GT; Hansen PE; Jacobsen OS
    Environ Pollut; 2009 Oct; 157(10):2865-70. PubMed ID: 19447533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil organic matter from pioneer species and its implications to phytostabilization of mined sites in the Sierra de Cartagena (Spain).
    Ottenhof CJ; Faz Cano A; Arocena JM; Nierop KG; Verstraten JM; van Mourik JM
    Chemosphere; 2007 Nov; 69(9):1341-50. PubMed ID: 17655914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of polar and nonpolar organic pollutants with soil organic matter: sorption experiments and molecular dynamics simulation.
    Ahmed AA; Thiele-Bruhn S; Aziz SG; Hilal RH; Elroby SA; Al-Youbi AO; Leinweber P; Kühn O
    Sci Total Environ; 2015 Mar; 508():276-87. PubMed ID: 25486638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet.
    Antony R; Grannas AM; Willoughby AS; Sleighter RL; Thamban M; Hatcher PG
    Environ Sci Technol; 2014 Jun; 48(11):6151-9. PubMed ID: 24804819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry.
    Gonsior M; Zwartjes M; Cooper WJ; Song W; Ishida KP; Tseng LY; Jeung MK; Rosso D; Hertkorn N; Schmitt-Kopplin P
    Water Res; 2011 Apr; 45(9):2943-53. PubMed ID: 21477837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the use of a freeze-dried versus an air-dried soil humic acid as a surrogate of soil organic matter for contaminant sorption.
    Hung WN; Lin TF; Chiu CH; Chiou CT
    Environ Pollut; 2012 Jan; 160(1):125-9. PubMed ID: 22035935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inorganics in organics: quantification of organic phosphorus and sulfur and trace element speciation in natural organic matter using HPLC-ICPMS.
    Lechtenfeld OJ; Koch BP; Geibert W; Ludwichowski KU; Kattner G
    Anal Chem; 2011 Dec; 83(23):8968-74. PubMed ID: 21992549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contentious nature of soil organic matter.
    Lehmann J; Kleber M
    Nature; 2015 Dec; 528(7580):60-8. PubMed ID: 26595271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophobicity of soils affected by fires: An assessment using molecular markers from ultra-high resolution mass spectrometry.
    Jiménez-Morillo NT; Almendros G; Miller AZ; Hatcher PG; González-Pérez JA
    Sci Total Environ; 2022 Apr; 817():152957. PubMed ID: 35016935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.