BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23341360)

  • 1. Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves.
    He JM; Ma XG; Zhang Y; Sun TF; Xu FF; Chen YP; Liu X; Yue M
    Plant Physiol; 2013 Mar; 161(3):1570-83. PubMed ID: 23341360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis.
    Li JH; Liu YQ; Lü P; Lin HF; Bai Y; Wang XC; Chen YL
    Plant Physiol; 2009 May; 150(1):114-24. PubMed ID: 19321706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis.
    Shi C; Qi C; Ren H; Huang A; Hei S; She X
    Plant J; 2015 Apr; 82(2):280-301. PubMed ID: 25754244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitogen-Activated Protein Kinase Phosphatases Affect UV-B-Induced Stomatal Closure via Controlling NO in Guard Cells.
    Li FC; Wang J; Wu MM; Fan CM; Li X; He JM
    Plant Physiol; 2017 Jan; 173(1):760-770. PubMed ID: 27837091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis.
    Ge XM; Cai HL; Lei X; Zhou X; Yue M; He JM
    Plant J; 2015 Apr; 82(1):138-50. PubMed ID: 25704455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure.
    Zhang TY; Li FC; Fan CM; Li X; Zhang FF; He JM
    Plant Sci; 2017 Sep; 262():190-199. PubMed ID: 28716416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCR1 Positively Regulates UV-B- and Ethylene-Induced Stomatal Closure via Activating GPA1-Dependent ROS and NO Production.
    Li X; Fu Q; Zhao FX; Wu YQ; Zhang TY; Li ZQ; He JM
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV RESISTANCE LOCUS8 mediates ultraviolet-B-induced stomatal closure in an ethylene-dependent manner.
    Ge XM; Hu X; Zhang J; Huang QM; Gao Y; Li ZQ; Li S; He JM
    Plant Sci; 2020 Dec; 301():110679. PubMed ID: 33218642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis.
    Zhu Y; Ge XM; Wu MM; Li X; He JM
    Plant Sci; 2014 Feb; 215-216():84-90. PubMed ID: 24388518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism.
    Tossi V; Lamattina L; Jenkins GI; Cassia RO
    Plant Physiol; 2014 Apr; 164(4):2220-30. PubMed ID: 24586043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis.
    Hei S; Liu Z; Huang A; She X
    Funct Plant Biol; 2018 Apr; 45(5):509-518. PubMed ID: 32290990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLC1 mediated Cycloastragenol-induced stomatal movement by regulating the production of NO in Arabidopsis thaliana.
    Kong J; Chen R; Liu R; Wang W; Wang S; Zhang J; Yang N
    BMC Plant Biol; 2023 Nov; 23(1):571. PubMed ID: 37978426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2.
    Chen YL; Huang R; Xiao YM; Lü P; Chen J; Wang XC
    Plant Physiol; 2004 Dec; 136(4):4096-103. PubMed ID: 15557100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADK2 positively modulates abscisic acid-induced stomatal closure by affecting accumulation of H
    Sun L; Li Y; Miao W; Piao T; Hao Y; Hao FS
    Plant Sci; 2017 Sep; 262():81-90. PubMed ID: 28716423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis.
    Wang HQ; Sun LP; Wang LX; Fang XW; Li ZQ; Zhang FF; Hu X; Qi C; He JM
    Plant Sci; 2020 May; 294():110464. PubMed ID: 32234220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal closure induced by hydrogen-rich water is dependent on GPA1 in Arabidopsis thaliana.
    Wang Z; Khan D; Li L; Zhang J; Rengel Z; Zhang B; Chen Q
    Plant Physiol Biochem; 2022 Jul; 183():72-75. PubMed ID: 35569167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RIC7 plays a negative role in ABA-induced stomatal closure by inhibiting H
    Zhu ZD; Sun HJ; Li J; Yuan YX; Zhao JF; Zhang CG; Chen YL
    Plant Signal Behav; 2021 Apr; 16(4):1876379. PubMed ID: 33586611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLDα1 and GPA1 are involved in the stomatal closure induced by Oridonin in Arabidopsis thaliana.
    Zhang Y; Liu R; Zhou Y; Wang S; Zhang B; Kong J; Zheng S; Yang N
    Funct Plant Biol; 2021 Sep; 48(10):1005-1016. PubMed ID: 34167638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis.
    Hao F; Zhao S; Dong H; Zhang H; Sun L; Miao C
    J Integr Plant Biol; 2010 Mar; 52(3):298-307. PubMed ID: 20377690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sinapate Esters Mediate UV-B-Induced Stomatal Closure by Regulating Nitric Oxide, Hydrogen Peroxide, and Malate Accumulation in Arabidopsis thaliana.
    Li W; Sun Y; Li K; Tian H; Jia J; Zhang H; Wang Y; Wang H; Bi B; Guo J; Tran LP; Miao Y
    Plant Cell Physiol; 2023 Jan; 63(12):1890-1899. PubMed ID: 35475535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.