These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 23341631)

  • 1. A vector-free microfluidic platform for intracellular delivery.
    Sharei A; Zoldan J; Adamo A; Sim WY; Cho N; Jackson E; Mao S; Schneider S; Han MJ; Lytton-Jean A; Basto PA; Jhunjhunwala S; Lee J; Heller DA; Kang JW; Hartoularos GC; Kim KS; Anderson DG; Langer R; Jensen KF
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2082-7. PubMed ID: 23341631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations.
    Xing X; Pan Y; Yobas L
    Anal Chem; 2018 Feb; 90(3):1836-1844. PubMed ID: 29308899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell squeezing as a robust, microfluidic intracellular delivery platform.
    Sharei A; Cho N; Mao S; Jackson E; Poceviciute R; Adamo A; Zoldan J; Langer R; Jensen KF
    J Vis Exp; 2013 Nov; (81):e50980. PubMed ID: 24300077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.
    Ju Z; Ma J; Wang C; Yu J; Qiao Y; Hei F
    Inflammation; 2017 Apr; 40(2):486-496. PubMed ID: 28000095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex vivo cytosolic delivery of functional macromolecules to immune cells.
    Sharei A; Trifonova R; Jhunjhunwala S; Hartoularos GC; Eyerman AT; Lytton-Jean A; Angin M; Sharma S; Poceviciute R; Mao S; Heimann M; Liu S; Talkar T; Khan OF; Addo M; von Andrian UH; Anderson DG; Langer R; Lieberman J; Jensen KF
    PLoS One; 2015; 10(4):e0118803. PubMed ID: 25875117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation.
    Han X; Liu Z; Jo MC; Zhang K; Li Y; Zeng Z; Li N; Zu Y; Qin L
    Sci Adv; 2015 Aug; 1(7):e1500454. PubMed ID: 26601238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-through comb electroporation device for delivery of macromolecules.
    Adamo A; Arione A; Sharei A; Jensen KF
    Anal Chem; 2013 Feb; 85(3):1637-41. PubMed ID: 23259401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Force-driven in Situ Selective Intracellular Delivery.
    Wang R; Chow YT; Chen S; Ma D; Luo T; Tan Y; Sun D
    Sci Rep; 2018 Sep; 8(1):14205. PubMed ID: 30242189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell-penetrating helical polymer for siRNA delivery to mammalian cells.
    Gabrielson NP; Lu H; Yin L; Kim KH; Cheng J
    Mol Ther; 2012 Aug; 20(8):1599-609. PubMed ID: 22643866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector-free intracellular delivery by reversible permeabilization.
    O'Dea S; Annibaldi V; Gallagher L; Mulholland J; Molloy EL; Breen CJ; Gilbert JL; Martin DS; Maguire M; Curry FR
    PLoS One; 2017; 12(3):e0174779. PubMed ID: 28358921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient and high-throughput electroporation microchip applicable for siRNA delivery.
    Huang H; Wei Z; Huang Y; Zhao D; Zheng L; Cai T; Wu M; Wang W; Ding X; Zhou Z; Du Q; Li Z; Liang Z
    Lab Chip; 2011 Jan; 11(1):163-72. PubMed ID: 20957267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
    Wang YI; Abaci HE; Shuler ML
    Biotechnol Bioeng; 2017 Jan; 114(1):184-194. PubMed ID: 27399645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform.
    Sharei A; Poceviciute R; Jackson EL; Cho N; Mao S; Hartoularos GC; Jang DY; Jhunjhunwala S; Eyerman A; Schoettle T; Langer R; Jensen KF
    Integr Biol (Camb); 2014 Apr; 6(4):470-5. PubMed ID: 24496115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides.
    Meade BR; Dowdy SF
    Adv Drug Deliv Rev; 2007 Mar; 59(2-3):134-40. PubMed ID: 17451840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatility of cell-penetrating peptides for intracellular delivery of siRNA.
    Singh T; Murthy ASN; Yang HJ; Im J
    Drug Deliv; 2018 Nov; 25(1):1996-2006. PubMed ID: 30799658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time assessment of nanoparticle-mediated antigen delivery and cell response.
    Cunha-Matos CA; Millington OR; Wark AW; Zagnoni M
    Lab Chip; 2016 Aug; 16(17):3374-81. PubMed ID: 27455884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.
    Wu H; Shi Y; Huang C; Zhang Y; Wu J; Shen H; Jia N
    J Biomater Appl; 2014 Apr; 28(8):1180-9. PubMed ID: 23985535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular delivery of siRNA by cell-penetrating peptides modified with cationic oligopeptides.
    Ishihara T; Goto M; Kodera K; Kanazawa H; Murakami Y; Mizushima Y; Higaki M
    Drug Deliv; 2009 Apr; 16(3):153-9. PubMed ID: 19514975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery.
    Wei Z; Zheng S; Wang R; Bu X; Ma H; Wu Y; Zhu L; Hu Z; Liang Z; Li Z
    Lab Chip; 2014 Oct; 14(20):4093-102. PubMed ID: 25182174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell electroporation arrays with real-time monitoring and feedback control.
    Khine M; Ionescu-Zanetti C; Blatz A; Wang LP; Lee LP
    Lab Chip; 2007 Apr; 7(4):457-62. PubMed ID: 17389961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.