These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23342110)

  • 21. Exploring a phylogenetic approach for the detection of correlated substitutions in proteins.
    Tuff P; Darlu P
    Mol Biol Evol; 2000 Nov; 17(11):1753-9. PubMed ID: 11070062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From principal component to direct coupling analysis of coevolution in proteins: low-eigenvalue modes are needed for structure prediction.
    Cocco S; Monasson R; Weigt M
    PLoS Comput Biol; 2013; 9(8):e1003176. PubMed ID: 23990764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disentangling direct from indirect co-evolution of residues in protein alignments.
    Burger L; van Nimwegen E
    PLoS Comput Biol; 2010 Jan; 6(1):e1000633. PubMed ID: 20052271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations?
    Shindyalov IN; Kolchanov NA; Sander C
    Protein Eng; 1994 Mar; 7(3):349-58. PubMed ID: 8177884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective inter-residue contact definitions for accurate protein fold recognition.
    Yuan C; Chen H; Kihara D
    BMC Bioinformatics; 2012 Nov; 13():292. PubMed ID: 23140471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.
    Várnai C; Burkoff NS; Wild DL
    PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of distant residue contacts with the use of evolutionary information.
    Vicatos S; Reddy BV; Kaznessis Y
    Proteins; 2005 Mar; 58(4):935-49. PubMed ID: 15645442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coevolutionary Signals and Structure-Based Models for the Prediction of Protein Native Conformations.
    Dos Santos RN; Jiang X; Martínez L; Morcos F
    Methods Mol Biol; 2019; 1851():83-103. PubMed ID: 30298393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ENVIRON: a software package to compare protein three-dimensional structures with homologous sequences using local structural motifs.
    Bordo D
    Comput Appl Biosci; 1993 Dec; 9(6):639-45. PubMed ID: 8143148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of conserved physico-chemical characteristics of proteins by analyzing clusters of positions with co-ordinated substitutions.
    Afonnikov DA; Oshchepkov DY; Kolchanov NA
    Bioinformatics; 2001 Nov; 17(11):1035-46. PubMed ID: 11724732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct-coupling analysis of residue coevolution captures native contacts across many protein families.
    Morcos F; Pagnani A; Lunt B; Bertolino A; Marks DS; Sander C; Zecchina R; Onuchic JN; Hwa T; Weigt M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):E1293-301. PubMed ID: 22106262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins.
    Landgraf R; Xenarios I; Eisenberg D
    J Mol Biol; 2001 Apr; 307(5):1487-502. PubMed ID: 11292355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using inferred residue contacts to distinguish between correct and incorrect protein models.
    Miller CS; Eisenberg D
    Bioinformatics; 2008 Jul; 24(14):1575-82. PubMed ID: 18511466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inter-protein residue covariation information unravels physically interacting protein dimers.
    Salmanian S; Pezeshk H; Sadeghi M
    BMC Bioinformatics; 2020 Dec; 21(1):584. PubMed ID: 33334319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covariation analysis of local amino acid sequences in recurrent protein local structures.
    Wang LY
    J Bioinform Comput Biol; 2005 Dec; 3(6):1391-409. PubMed ID: 16374913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional structures of membrane proteins from genomic sequencing.
    Hopf TA; Colwell LJ; Sheridan R; Rost B; Sander C; Marks DS
    Cell; 2012 Jun; 149(7):1607-21. PubMed ID: 22579045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residue-residue contact substitution probabilities derived from aligned three-dimensional structures and the identification of common folds.
    Rodionov MA; Johnson MS
    Protein Sci; 1994 Dec; 3(12):2366-77. PubMed ID: 7756991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.