These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23342118)

  • 1. Drosophila clueless is highly expressed in larval neuroblasts, affects mitochondrial localization and suppresses mitochondrial oxidative damage.
    Sen A; Damm VT; Cox RT
    PLoS One; 2013; 8(1):e54283. PubMed ID: 23342118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clueless regulates aPKC activity and promotes self-renewal cell fate in Drosophila lgl mutant larval brains.
    Goh LH; Zhou X; Lee MC; Lin S; Wang H; Luo Y; Yang X
    Dev Biol; 2013 Sep; 381(2):353-64. PubMed ID: 23835532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila.
    Sen A; Kalvakuri S; Bodmer R; Cox RT
    Dis Model Mech; 2015 Jun; 8(6):577-89. PubMed ID: 26035866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clueless forms dynamic, insulin-responsive bliss particles sensitive to stress.
    Sheard KM; Thibault-Sennett SA; Sen A; Shewmaker F; Cox RT
    Dev Biol; 2020 Mar; 459(2):149-160. PubMed ID: 31837288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin.
    Cox RT; Spradling AC
    Dis Model Mech; 2009; 2(9-10):490-9. PubMed ID: 19638420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila clueless is involved in Parkin-dependent mitophagy by promoting VCP-mediated Marf degradation.
    Wang ZH; Clark C; Geisbrecht ER
    Hum Mol Genet; 2016 May; 25(10):1946-1964. PubMed ID: 26931463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila.
    Parmentier ML; Woods D; Greig S; Phan PG; Radovic A; Bryant P; O'Kane CJ
    J Neurosci; 2000 Jul; 20(14):RC84. PubMed ID: 10875939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mosaic genetic screen for novel mutations affecting Drosophila neuroblast divisions.
    Slack C; Somers WG; Sousa-Nunes R; Chia W; Overton PM
    BMC Genet; 2006 Jun; 7():33. PubMed ID: 16749923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development.
    Kitajima A; Fuse N; Isshiki T; Matsuzaki F
    Dev Biol; 2010 Nov; 347(1):9-23. PubMed ID: 20599889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex.
    Bayraktar OA; Boone JQ; Drummond ML; Doe CQ
    Neural Dev; 2010 Oct; 5():26. PubMed ID: 20920301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle.
    Wang ZH; Rabouille C; Geisbrecht ER
    Biol Open; 2015 Apr; 4(5):636-48. PubMed ID: 25862246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein phosphatase 4 mediates localization of the Miranda complex during Drosophila neuroblast asymmetric divisions.
    Sousa-Nunes R; Chia W; Somers WG
    Genes Dev; 2009 Feb; 23(3):359-72. PubMed ID: 19204120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of cell division and expression of asymmetric cell fate determinants in postembryonic neuroblast lineages of Drosophila.
    Ceron J; González C; Tejedor FJ
    Dev Biol; 2001 Feb; 230(2):125-38. PubMed ID: 11161567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila APC2 and APC1 have overlapping roles in the larval brain despite their distinct intracellular localizations.
    Akong K; McCartney BM; Peifer M
    Dev Biol; 2002 Oct; 250(1):71-90. PubMed ID: 12297097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial transcription factor B2 is essential for metabolic function in Drosophila melanogaster development.
    Adán C; Matsushima Y; Hernández-Sierra R; Marco-Ferreres R; Fernández-Moreno MA; González-Vioque E; Calleja M; Aragón JJ; Kaguni LS; Garesse R
    J Biol Chem; 2008 May; 283(18):12333-42. PubMed ID: 18308726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts.
    Yu F; Morin X; Kaushik R; Bahri S; Yang X; Chia W
    J Cell Sci; 2003 Mar; 116(Pt 5):887-96. PubMed ID: 12571286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation.
    Lee CY; Robinson KJ; Doe CQ
    Nature; 2006 Feb; 439(7076):594-8. PubMed ID: 16357871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of the central nervous system neuroblast proliferation repressor ana leads to defects in larval olfactory behavior.
    Park Y; Caldwell MC; Datta S
    J Neurobiol; 1997 Aug; 33(2):199-211. PubMed ID: 9240375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutants for
    Duncan DM; Kiefel P; Duncan I
    G3 (Bethesda); 2017 Mar; 7(3):789-799. PubMed ID: 28104670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development.
    Bello BC; Izergina N; Caussinus E; Reichert H
    Neural Dev; 2008 Feb; 3():5. PubMed ID: 18284664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.