These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23342976)

  • 1. Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri): conservation and innovation across the fish-tetrapod transition.
    Boisvert CA; Joss JM; Ahlberg PE
    Evodevo; 2013 Jan; 4(1):3. PubMed ID: 23342976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mandibular musculature constrains brain-endocast disparity between sarcopterygians.
    Challands TJ; Pardo JD; Clement AM
    R Soc Open Sci; 2020 Sep; 7(9):200933. PubMed ID: 33047053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Hindlimb Muscle Anatomy Across the Tetrapod Water-to-Land Transition, Including Comparisons With Forelimb Anatomy.
    Molnar JL; Diogo R; Hutchinson JR; Pierce SE
    Anat Rec (Hoboken); 2020 Feb; 303(2):218-234. PubMed ID: 30365249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of adrenergic ligands to liver plasma membrane preparations from the axolotl, Ambystoma mexicanum; the toad, Xenopus laevis; and the Australian lungfish, Neoceratodus forsteri.
    Janssens PA; Grigg JA
    Gen Comp Endocrinol; 1988 Sep; 71(3):524-30. PubMed ID: 2847957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lungfish albumin is more similar to tetrapod than to teleost albumins: purification and characterisation of albumin from the Australian lungfish, Neoceratodus forsteri.
    Metcalf VJ; George PM; Brennan SO
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jul; 147(3):428-37. PubMed ID: 17409005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development.
    Purushothaman S; Elewa A; Seifert AW
    Elife; 2019 Sep; 8():. PubMed ID: 31538936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fish fingers: digit homologues in sarcopterygian fish fins.
    Johanson Z; Joss J; Boisvert CA; Ericsson R; Sutija M; Ahlberg PE
    J Exp Zool B Mol Dev Evol; 2007 Dec; 308(6):757-68. PubMed ID: 17849442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cranial neural crest emergence and migration in the Mexican axolotl (Ambystoma mexicanum).
    Falck P; Hanken J; Olsson L
    Zoology (Jena); 2002; 105(3):195-202. PubMed ID: 16351868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual ecology of the Australian lungfish (Neoceratodus forsteri).
    Hart NS; Bailes HJ; Vorobyev M; Marshall NJ; Collin SP
    BMC Ecol; 2008 Dec; 8():21. PubMed ID: 19091135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri.
    Bailes HJ; Davies WL; Trezise AE; Collin SP
    BMC Evol Biol; 2007 Oct; 7():200. PubMed ID: 17961206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of the cornea and iris in the Australian lungfish Neoceratodus forsteri (Krefft 1870) (Dipnoi): Functional and evolutionary perspectives of transitioning from an aquatic to a terrestrial environment.
    Barry Collin H; Ratcliffe J; Collin SP
    J Morphol; 2024 Jan; 285(1):e21662. PubMed ID: 38100743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods.
    Miyake T; Kumamoto M; Iwata M; Sato R; Okabe M; Koie H; Kumai N; Fujii K; Matsuzaki K; Nakamura C; Yamauchi S; Yoshida K; Yoshimura K; Komoda A; Uyeno T; Abe Y
    Anat Rec (Hoboken); 2016 Sep; 299(9):1203-23. PubMed ID: 27343022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of cDNA encoding the common alpha subunit precursor molecule of pituitary glycoprotein hormones in the Australian lungfish, Neoceratodus forsteri.
    Arai Y; Kubokawa K; Ishii S; Joss JM
    Gen Comp Endocrinol; 1998 May; 110(2):109-17. PubMed ID: 9570931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoseptal architecture of sarcopterygian fishes and salamanders with special reference to Ambystoma mexicanum.
    Gemballa S; Ebmeyer L
    Zoology (Jena); 2003; 106(1):29-41. PubMed ID: 16351889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete mitochondrial genome sequences of the South american and the Australian lungfish: testing of the phylogenetic performance of mitochondrial data sets for phylogenetic problems in tetrapod relationships.
    Brinkmann H; Denk A; Zitzler J; Joss JJ; Meyer A
    J Mol Evol; 2004 Dec; 59(6):834-48. PubMed ID: 15599515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cephalic muscle development in the Australian lungfish, Neoceratodus forsteri.
    Ziermann JM; Clement AM; Ericsson R; Olsson L
    J Morphol; 2018 Apr; 279(4):494-516. PubMed ID: 29214665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fins into limbs: Recent insights from sarcopterygian fish.
    Amaral DB; Schneider I
    Genesis; 2018 Jan; 56(1):. PubMed ID: 28834157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of
    Langellotto F; Fiorentino M; De Felice E; Caputi L; Nittoli V; Joss JMP; Sordino P
    Evodevo; 2018; 9():11. PubMed ID: 29719716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion.
    Boisvert CA
    Nature; 2005 Dec; 438(7071):1145-7. PubMed ID: 16372007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marginal tooth-bearing bones in the lower jaw of the recent australian lungfish, Neoceratodus forsteri (Osteichthyes, Dipnoi).
    Kemp A
    J Morphol; 1995 Sep; 225(3):345-355. PubMed ID: 29865330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.