BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23342988)

  • 1. A computational model of amoeboid cell migration.
    Lim FY; Koon YL; Chiam KH
    Comput Methods Biomech Biomed Engin; 2013 Oct; 16(10):1085-95. PubMed ID: 23342988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions.
    Tozluoğlu M; Tournier AL; Jenkins RP; Hooper S; Bates PA; Sahai E
    Nat Cell Biol; 2013 Jul; 15(7):751-62. PubMed ID: 23792690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Met-induced membrane blebbing leads to amoeboid cell motility and invasion.
    Laser-Azogui A; Diamant-Levi T; Israeli S; Roytman Y; Tsarfaty I
    Oncogene; 2014 Apr; 33(14):1788-98. PubMed ID: 23665680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic gel-strip model for the simulation of migrating cells.
    Sakamoto Y; Prudhomme S; Zaman MH
    Ann Biomed Eng; 2011 Nov; 39(11):2735-49. PubMed ID: 21800204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments.
    Tozluoglu M; Mao Y; Bates PA; Sahai E
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traction stress analysis and modeling reveal that amoeboid migration in confined spaces is accompanied by expansive forces and requires the structural integrity of the membrane-cortex interactions.
    Yip AK; Chiam KH; Matsudaira P
    Integr Biol (Camb); 2015 Oct; 7(10):1196-211. PubMed ID: 26050549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational model of amoeboid cell motility in the presence of obstacles.
    Campbell EJ; Bagchi P
    Soft Matter; 2018 Jul; 14(28):5741-5763. PubMed ID: 29873659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random blebbing motion: A simple model linking cell structural properties to migration characteristics.
    Woolley TE; Gaffney EA; Goriely A
    Phys Rev E; 2017 Jul; 96(1-1):012409. PubMed ID: 29347096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of actin protrusion dynamics in cell migration through a degradable viscoelastic extracellular matrix: Insights from a computational model.
    Heck T; Vargas DA; Smeets B; Ramon H; Van Liedekerke P; Van Oosterwyck H
    PLoS Comput Biol; 2020 Jan; 16(1):e1007250. PubMed ID: 31929522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reduced 1D stochastic model of bleb-driven cell migration.
    Muñoz-López MJ; Kim H; Mori Y
    Biophys J; 2022 May; 121(10):1881-1896. PubMed ID: 35450826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement.
    Friedl P; Borgmann S; Bröcker EB
    J Leukoc Biol; 2001 Oct; 70(4):491-509. PubMed ID: 11590185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane.
    Keller H; Eggli P
    Cell Motil Cytoskeleton; 1998; 41(2):181-93. PubMed ID: 9786092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cellular Potts Model simulating cell migration on and in matrix environments.
    Scianna M; Preziosi L; Wolf K
    Math Biosci Eng; 2013 Feb; 10(1):235-61. PubMed ID: 23311371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of amoeboid movement into two mechanically distinct modes.
    Yoshida K; Soldati T
    J Cell Sci; 2006 Sep; 119(Pt 18):3833-44. PubMed ID: 16926192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell motility through plasma membrane blebbing.
    Fackler OT; Grosse R
    J Cell Biol; 2008 Jun; 181(6):879-84. PubMed ID: 18541702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells.
    Wu H; de León MAP; Othmer HG
    J Math Biol; 2018 Sep; 77(3):595-626. PubMed ID: 29480329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing off the walls: a mechanism of cell motility in confinement.
    Hawkins RJ; Piel M; Faure-Andre G; Lennon-Dumenil AM; Joanny JF; Prost J; Voituriez R
    Phys Rev Lett; 2009 Feb; 102(5):058103. PubMed ID: 19257561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion tunes speed and persistence by coordinating protrusions and extracellular matrix remodeling.
    Leineweber WD; Fraley SI
    Dev Cell; 2023 Aug; 58(15):1414-1428.e4. PubMed ID: 37321214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling actin polymerization: the effect on confined cell migration.
    Hervas-Raluy S; Garcia-Aznar JM; Gomez-Benito MJ
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1177-1187. PubMed ID: 30843134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.