These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23343200)

  • 1. Physically-motivated force fields from symmetry-adapted perturbation theory.
    McDaniel JG; Schmidt JR
    J Phys Chem A; 2013 Mar; 117(10):2053-66. PubMed ID: 23343200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physically motivated, robust, ab initio force fields for CO2 and N2.
    Yu K; McDaniel JG; Schmidt JR
    J Phys Chem B; 2011 Aug; 115(33):10054-63. PubMed ID: 21736354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferable next-generation force fields from simple liquids to complex materials.
    Schmidt JR; Yu K; McDaniel JG
    Acc Chem Res; 2015 Mar; 48(3):548-56. PubMed ID: 25688596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation-π interactions: accurate intermolecular potential from symmetry-adapted perturbation theory.
    Ansorg K; Tafipolsky M; Engels B
    J Phys Chem B; 2013 Sep; 117(35):10093-102. PubMed ID: 23924321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles many-body force fields from the gas phase to liquid: a "universal" approach.
    McDaniel JG; Schmidt JR
    J Phys Chem B; 2014 Jul; 118(28):8042-53. PubMed ID: 24655231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Many-body effects are essential in a physically motivated CO2 force field.
    Yu K; Schmidt JR
    J Chem Phys; 2012 Jan; 136(3):034503. PubMed ID: 22280763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.
    Zgarbová M; Otyepka M; Sponer J; Hobza P; Jurecka P
    Phys Chem Chem Phys; 2010 Sep; 12(35):10476-93. PubMed ID: 20603660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.
    Carter-Fenk K; Lao KU; Herbert JM
    Acc Chem Res; 2021 Oct; 54(19):3679-3690. PubMed ID: 34550669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic properties for applications in chemical industry via classical force fields.
    Guevara-Carrion G; Hasse H; Vrabec J
    Top Curr Chem; 2012; 307():201-49. PubMed ID: 21678137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polarizable ellipsoidal force field for halogen bonds.
    Du L; Gao J; Bi F; Wang L; Liu C
    J Comput Chem; 2013 Sep; 34(23):2032-40. PubMed ID: 23804187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Monomer Electron Density Force Field (MEDFF): A Physically Inspired Model for Noncovalent Interactions.
    Vandenbrande S; Waroquier M; Speybroeck VV; Verstraelen T
    J Chem Theory Comput; 2017 Jan; 13(1):161-179. PubMed ID: 27935712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the accuracy of SAPT(DFT) interaction energies by comparison with experimentally derived noble gas potentials and molecular crystal lattice energies.
    Bordner AJ
    Chemphyschem; 2012 Dec; 13(17):3981-8. PubMed ID: 23060262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4].
    Choi E; McDaniel JG; Schmidt JR; Yethiraj A
    J Phys Chem Lett; 2014 Aug; 5(15):2670-4. PubMed ID: 26277961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.
    McDaniel JG; Schmidt JR
    Annu Rev Phys Chem; 2016 May; 67():467-88. PubMed ID: 27070322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of intermolecular interaction energies from SAPT and DFT including empirical dispersion contributions.
    Hesselmann A
    J Phys Chem A; 2011 Oct; 115(41):11321-30. PubMed ID: 21806071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved treatment of empirical dispersion and a many-body energy decomposition scheme for the explicit polarization plus symmetry-adapted perturbation theory (XSAPT) method.
    Lao KU; Herbert JM
    J Chem Phys; 2013 Jul; 139(3):034107. PubMed ID: 23883010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.