These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 23343226)
1. Relationship between the structures of flavonoids and oxygen radical absorbance capacity values: a quantum chemical analysis. Zhang D; Liu Y; Chu L; Wei Y; Wang D; Cai S; Zhou F; Ji B J Phys Chem A; 2013 Feb; 117(8):1784-94. PubMed ID: 23343226 [TBL] [Abstract][Full Text] [Related]
2. A novel and simple ORAC methodology based on the interaction of Pyrogallol Red with peroxyl radicals. López-Alarcón C; Lissi E Free Radic Res; 2006 Sep; 40(9):979-85. PubMed ID: 17015279 [TBL] [Abstract][Full Text] [Related]
3. Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms. Amić A; Marković Z; Dimitrić Marković JM; Stepanić V; Lučić B; Amić D Food Chem; 2014; 152():578-85. PubMed ID: 24444978 [TBL] [Abstract][Full Text] [Related]
4. PM6 study of free radical scavenging mechanisms of flavonoids: why does O-H bond dissociation enthalpy effectively represent free radical scavenging activity? Amić D; Stepanić V; Lučić B; Marković Z; Dimitrić Marković JM J Mol Model; 2013 Jun; 19(6):2593-603. PubMed ID: 23479282 [TBL] [Abstract][Full Text] [Related]
5. Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Stepanić V; Gall Trošelj K; Lučić B; Marković Z; Amić D Food Chem; 2013 Nov; 141(2):1562-70. PubMed ID: 23790952 [TBL] [Abstract][Full Text] [Related]
6. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059 [TBL] [Abstract][Full Text] [Related]
7. Non-Linear Quantitative Structure⁻Activity Relationships Modelling, Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants. Žuvela P; David J; Yang X; Huang D; Wong MW Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31083440 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. Zhang D; Chu L; Liu Y; Wang A; Ji B; Wu W; Zhou F; Wei Y; Cheng Q; Cai S; Xie L; Jia G J Agric Food Chem; 2011 Sep; 59(18):10277-85. PubMed ID: 21827150 [TBL] [Abstract][Full Text] [Related]
11. Programmable flow system for automation of oxygen radical absorbance capacity assay using pyrogallol red for estimation of antioxidant reactivity. Ramos II; Gregório BJ; Barreiros L; Magalhães LM; Tóth IV; Reis S; Lima JL; Segundo MA Talanta; 2016 Apr; 150():599-606. PubMed ID: 26838448 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity. Marković ZS; Mentus SV; Dimitrić Marković JM J Phys Chem A; 2009 Dec; 113(51):14170-9. PubMed ID: 19954196 [TBL] [Abstract][Full Text] [Related]
13. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Wu X; Beecher GR; Holden JM; Haytowitz DB; Gebhardt SE; Prior RL J Agric Food Chem; 2004 Jun; 52(12):4026-37. PubMed ID: 15186133 [TBL] [Abstract][Full Text] [Related]
14. Antioxidant properties and free radical-scavenging reactivity of a family of hydroxynaphthalenones and dihydroxyanthracenones. Rodríguez J; Olea-Azar C; Cavieres C; Norambuena E; Delgado-Castro T; Soto-Delgado J; Araya-Maturana R Bioorg Med Chem; 2007 Nov; 15(22):7058-65. PubMed ID: 17845855 [TBL] [Abstract][Full Text] [Related]
15. Influence of the target molecule on the oxygen radical absorbance capacity index: a comparison between alizarin red- and fluorescein-based methodologies. Martin I; Aspée A; Torres P; Lissi E; López-Alarcón C J Med Food; 2009 Dec; 12(6):1386-92. PubMed ID: 20041798 [TBL] [Abstract][Full Text] [Related]
16. A device for the semiautomatic determination of oxygen-radical absorbance capacity. Caldwell CR Anal Biochem; 2000 Dec; 287(2):226-33. PubMed ID: 11112268 [TBL] [Abstract][Full Text] [Related]
17. Comparison of ozone-specific (OZAC) and oxygen radical (ORAC) antioxidant capacity assays for use with nasal lavage fluid. Rutkowski JM; Santiag LY; Ben-Jebria A; Ultman JS Toxicol In Vitro; 2011 Oct; 25(7):1406-13. PubMed ID: 21513792 [TBL] [Abstract][Full Text] [Related]
18. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. Musialik M; Kuzmicz R; Pawłowski TS; Litwinienko G J Org Chem; 2009 Apr; 74(7):2699-709. PubMed ID: 19275193 [TBL] [Abstract][Full Text] [Related]
19. Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids. Amić D; Lucić B Bioorg Med Chem; 2010 Jan; 18(1):28-35. PubMed ID: 19944611 [TBL] [Abstract][Full Text] [Related]
20. Effect of low temperature on flavonoids, oxygen radical absorbance capacity values and major components of winter sweet spinach (Spinacia oleracea L.). Watanabe M; Ayugase J J Sci Food Agric; 2015 Aug; 95(10):2095-104. PubMed ID: 25243392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]