These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23343266)

  • 1. Using fixed-node diffusion Monte Carlo to investigate the effects of rotation-vibration coupling in highly fluxional asymmetric top molecules: application to H2D+.
    Petit AS; Wellen BA; McCoy AB
    J Chem Phys; 2013 Jan; 138(3):034105. PubMed ID: 23343266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion Monte Carlo approaches for evaluating rotationally excited states of symmetric top molecules: application to H(3)O(+) and D(3)O(+).
    Petit AS; McCoy AB
    J Phys Chem A; 2009 Nov; 113(45):12706-14. PubMed ID: 19678634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling rotation-vibration mixing in highly fluxional molecules using diffusion Monte Carlo: applications to H3+ and H3O+.
    Petit AS; Wellen BA; McCoy AB
    J Chem Phys; 2012 Feb; 136(7):074101. PubMed ID: 22360230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous evaluation of multiple rotationally excited states of H3(+), H3O(+), and CH5(+) using diffusion Monte Carlo.
    Petit AS; Ford JE; McCoy AB
    J Phys Chem A; 2014 Sep; 118(35):7206-20. PubMed ID: 24053598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion Monte Carlo in internal coordinates.
    Petit AS; McCoy AB
    J Phys Chem A; 2013 Aug; 117(32):7009-18. PubMed ID: 23410209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing excited states of CH5+ with diffusion Monte Carlo.
    Hinkle CE; McCoy AB
    J Phys Chem A; 2008 Mar; 112(10):2058-64. PubMed ID: 18251525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotation/Torsion Coupling in H5(+), D5(+), H4D(+), and HD4(+) Using Diffusion Monte Carlo.
    Marlett ML; Lin Z; McCoy AB
    J Phys Chem A; 2015 Sep; 119(35):9405-13. PubMed ID: 26204429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the structure and spectroscopy of H5(+) using diffusion Monte Carlo.
    Lin Z; McCoy AB
    J Phys Chem A; 2013 Nov; 117(46):11725-36. PubMed ID: 23560453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Monte Carlo simulations of selected ammonia clusters (n = 2-5): isotope effects on the ground state of typical hydrogen bonded systems.
    Curotto E; Mella M
    J Chem Phys; 2010 Dec; 133(21):214301. PubMed ID: 21142298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of nodal surfaces in fixed-node diffusion Monte Carlo calculations using a genetic algorithm.
    Ramilowski JA; Farrelly D
    Phys Chem Chem Phys; 2010 Oct; 12(39):12450-6. PubMed ID: 20717596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variational study on the vibrational level structure and vibrational level mixing of highly vibrationally excited S₀ D₂CO.
    Rashev S; Moule DC; Rashev V
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():111-8. PubMed ID: 22750345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.
    Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the extent of intramolecular hydrogen bonding in gas-phase and hydrated 1,2-ethanediol.
    Crittenden DL; Thompson KC; Jordan MJ
    J Phys Chem A; 2005 Mar; 109(12):2971-7. PubMed ID: 16833617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rydberg states with quantum Monte Carlo.
    Bande A; Lüchow A; Della Sala F; Görling A
    J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2008 Mar; 128(12):124320. PubMed ID: 18376932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular hydrogen adsorbed on benzene: Insights from a quantum Monte Carlo study.
    Beaudet TD; Casula M; Kim J; Sorella S; Martin RM
    J Chem Phys; 2008 Oct; 129(16):164711. PubMed ID: 19045302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jastrow correlated and quantum Monte Carlo calculations for the low-lying states of the carbon atom.
    Maldonado P; Sarsa A; Buendía E; Gálvez FJ
    J Chem Phys; 2011 Apr; 134(13):134102. PubMed ID: 21476738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum effects of translational motions in solid para-hydrogen and ortho-deuterium: anharmonic extension of the Einstein model.
    Kühn O; Manz J; Schild A
    J Phys Condens Matter; 2010 Apr; 22(13):135401. PubMed ID: 21389514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory.
    Ng YH; Bettens RP
    J Phys Chem A; 2016 Mar; 120(8):1297-306. PubMed ID: 26835785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Monte Carlo study of first-row atoms using transcorrelated variational Monte Carlo trial functions.
    Prasad R; Umezawa N; Domin D; Salomon-Ferrer R; Lester WA
    J Chem Phys; 2007 Apr; 126(16):164109. PubMed ID: 17477591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.