These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23343289)

  • 1. Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry.
    Hummelshøj JS; Luntz AC; Nørskov JK
    J Chem Phys; 2013 Jan; 138(3):034703. PubMed ID: 23343289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. History effects in lithium-oxygen batteries: how initial seeding influences the discharge capacity.
    Rinaldi A; Wijaya O; Hoster HE; Yu DY
    ChemSusChem; 2014 May; 7(5):1283-8. PubMed ID: 24591297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not.
    Radin MD; Rodriguez JF; Tian F; Siegel DJ
    J Am Chem Soc; 2012 Jan; 134(2):1093-103. PubMed ID: 22148314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li-O2 Kinetic Overpotentials: Tafel Plots from Experiment and First-Principles Theory.
    Viswanathan V; Nørskov JK; Speidel A; Scheffler R; Gowda S; Luntz AC
    J Phys Chem Lett; 2013 Feb; 4(4):556-60. PubMed ID: 26281865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries.
    Højberg J; McCloskey BD; Hjelm J; Vegge T; Johansen K; Norby P; Luntz AC
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4039-47. PubMed ID: 25625507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2 reduction by lithium on Au(111) and Pt(111).
    Xu Y; Shelton WA
    J Chem Phys; 2010 Jul; 133(2):024703. PubMed ID: 20632766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.
    Shui JL; Okasinski JS; Chen C; Almer JD; Liu DJ
    ChemSusChem; 2014 Feb; 7(2):543-8. PubMed ID: 24399807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery.
    Yang J; Zhai D; Wang HH; Lau KC; Schlueter JA; Du P; Myers DJ; Sun YK; Curtiss LA; Amine K
    Phys Chem Chem Phys; 2013 Mar; 15(11):3764-71. PubMed ID: 23389737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetism in lithium-oxygen discharge product.
    Lu J; Jung HJ; Lau KC; Zhang Z; Schlueter JA; Du P; Assary RS; Greeley J; Ferguson GA; Wang HH; Hassoun J; Iddir H; Zhou J; Zuin L; Hu Y; Sun YK; Scrosati B; Curtiss LA; Amine K
    ChemSusChem; 2013 Jul; 6(7):1196-202. PubMed ID: 23670967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries.
    Lu YC; Xu Z; Gasteiger HA; Chen S; Hamad-Schifferli K; Shao-Horn Y
    J Am Chem Soc; 2010 Sep; 132(35):12170-1. PubMed ID: 20527774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells.
    Meini S; Tsiouvaras N; Schwenke KU; Piana M; Beyer H; Lange L; Gasteiger HA
    Phys Chem Chem Phys; 2013 Jul; 15(27):11478-93. PubMed ID: 23748698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries.
    Viswanathan V; Thygesen KS; Hummelshøj JS; Nørskov JK; Girishkumar G; McCloskey BD; Luntz AC
    J Chem Phys; 2011 Dec; 135(21):214704. PubMed ID: 22149808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes.
    Kim BG; Lee JN; Lee DJ; Park JK; Choi JW
    ChemSusChem; 2013 Mar; 6(3):443-8. PubMed ID: 23371842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries.
    McCloskey BD; Scheffler R; Speidel A; Bethune DS; Shelby RM; Luntz AC
    J Am Chem Soc; 2011 Nov; 133(45):18038-41. PubMed ID: 21995529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
    Lu YC; Shao-Horn Y
    J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum nitride/N-doped carbon nanospheres for lithium-O₂ battery cathode electrocatalyst.
    Zhang K; Zhang L; Chen X; He X; Wang X; Dong S; Gu L; Liu Z; Huang C; Cui G
    ACS Appl Mater Interfaces; 2013 May; 5(9):3677-82. PubMed ID: 23544800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.