BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23343299)

  • 1. Translocation and encapsulation of siRNA inside carbon nanotubes.
    Mogurampelly S; Maiti PK
    J Chem Phys; 2013 Jan; 138(3):034901. PubMed ID: 23343299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.
    Pei QX; Lim CG; Cheng Y; Gao H
    J Chem Phys; 2008 Sep; 129(12):125101. PubMed ID: 19045062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery.
    Santosh M; Panigrahi S; Bhattacharyya D; Sood AK; Maiti PK
    J Chem Phys; 2012 Feb; 136(6):065106. PubMed ID: 22360226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diameter selectivity of protein encapsulation in carbon nanotubes.
    Kang Y; Wang Q; Liu YC; Shen JW; Wu T
    J Phys Chem B; 2010 Mar; 114(8):2869-75. PubMed ID: 20146524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide encapsulation regulated by the geometry of carbon nanotubes.
    Zhang ZS; Kang Y; Liang LJ; Liu YC; Wu T; Wang Q
    Biomaterials; 2014 Feb; 35(5):1771-8. PubMed ID: 24290699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SiRNA delivery with functionalized carbon nanotubes.
    Varkouhi AK; Foillard S; Lammers T; Schiffelers RM; Doris E; Hennink WE; Storm G
    Int J Pharm; 2011 Sep; 416(2):419-25. PubMed ID: 21320582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.
    Su J; Guo H
    J Chem Phys; 2011 Jun; 134(24):244513. PubMed ID: 21721649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nanochannel dimension on the transport of water molecules.
    Su J; Guo H
    J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymers encapsulated in short single wall carbon nanotubes: pseudo-1D morphologies and induced chirality.
    Kumar S; Pattanayek SK; Pereira GG
    J Chem Phys; 2015 Mar; 142(11):114901. PubMed ID: 25796260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the spontaneous encapsulation of proteins in carbon nanotubes.
    Kang Y; Liu YC; Wang Q; Shen JW; Wu T; Guan WJ
    Biomaterials; 2009 May; 30(14):2807-15. PubMed ID: 19200595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding between DNA and carbon nanotubes strongly depends upon sequence and chirality.
    Shankar A; Mittal J; Jagota A
    Langmuir; 2014 Mar; 30(11):3176-83. PubMed ID: 24568667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing diameter-selective solubilisation of carbon nanotubes by reversible cyclic peptides using molecular dynamics simulations.
    Friling SR; Notman R; Walsh TR
    Nanoscale; 2010 Jan; 2(1):98-106. PubMed ID: 20648370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic desalination using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation.
    Chen Q; Kong X; Li J; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 Sep; 16(35):18941-8. PubMed ID: 25092215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of nucleic acids with carbon nanotubes and dendrimers.
    Nandy B; Santosh M; Maiti PK
    J Biosci; 2012 Jul; 37(3):457-74. PubMed ID: 22750983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene.
    Cheng CL; Zhao GJ
    Nanoscale; 2012 Apr; 4(7):2301-5. PubMed ID: 22392473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane.
    Sahoo AK; Kanchi S; Mandal T; Dasgupta C; Maiti PK
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6168-6179. PubMed ID: 29373024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study.
    Nelson TR; Chaban VV; Prezhdo VV; Prezhdo OV
    J Phys Chem B; 2011 May; 115(18):5260-7. PubMed ID: 21082855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled transport of DNA through a Y-shaped carbon nanotube in a solid membrane.
    Luan B; Zhou B; Huynh T; Zhou R
    Nanoscale; 2014 Oct; 6(19):11479-83. PubMed ID: 25154639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations.
    Tummala NR; Morrow BH; Resasco DE; Striolo A
    ACS Nano; 2010 Dec; 4(12):7193-204. PubMed ID: 21128672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.