These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy. Drira Z; Yadavalli VK J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877 [TBL] [Abstract][Full Text] [Related]
8. FGF-1 and proteolytically mediated cleavage site presentation influence three-dimensional fibroblast invasion in biomimetic PEGDA hydrogels. Sokic S; Papavasiliou G Acta Biomater; 2012 Jul; 8(6):2213-22. PubMed ID: 22426138 [TBL] [Abstract][Full Text] [Related]
9. Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion. Xu Q; Zhang Z; Xiao C; He C; Chen X Biomacromolecules; 2017 Apr; 18(4):1411-1418. PubMed ID: 28292176 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix. Park KH; Na K; Chung HM Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141 [TBL] [Abstract][Full Text] [Related]
11. Protease-Sensitive Hydrogel Biomaterials with Tunable Modulus and Adhesion Ligand Gradients for 3D Vascular Sprouting. He YJ; Young DA; Mededovic M; Li K; Li C; Tichauer K; Venerus D; Papavasiliou G Biomacromolecules; 2018 Nov; 19(11):4168-4181. PubMed ID: 30253093 [TBL] [Abstract][Full Text] [Related]
12. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D. Lin L; Marchant RE; Zhu J; Kottke-Marchant K Acta Biomater; 2014 Dec; 10(12):5106-5115. PubMed ID: 25173839 [TBL] [Abstract][Full Text] [Related]
13. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties. Zustiak SP; Durbal R; Leach JB Acta Biomater; 2010 Sep; 6(9):3404-14. PubMed ID: 20385260 [TBL] [Abstract][Full Text] [Related]
14. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. Wang H; Haeger SM; Kloxin AM; Leinwand LA; Anseth KS PLoS One; 2012; 7(7):e39969. PubMed ID: 22808079 [TBL] [Abstract][Full Text] [Related]
15. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Jiang T; Zhao J; Yu S; Mao Z; Gao C; Zhu Y; Mao C; Zheng L Biomaterials; 2019 Jan; 188():130-143. PubMed ID: 30343256 [TBL] [Abstract][Full Text] [Related]
16. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen. Madaghiele M; Marotta F; Demitri C; Montagna F; Maffezzoli A; Sannino A J Appl Biomater Funct Mater; 2014 Dec; 12(3):183-92. PubMed ID: 24700267 [TBL] [Abstract][Full Text] [Related]
17. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres. Yang W; Yu H; Li G; Wang Y; Liu L Biomed Microdevices; 2016 Dec; 18(6):107. PubMed ID: 27830453 [TBL] [Abstract][Full Text] [Related]
18. Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Sokic S; Papavasiliou G Tissue Eng Part A; 2012 Dec; 18(23-24):2477-86. PubMed ID: 22725267 [TBL] [Abstract][Full Text] [Related]
19. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. Gaharwar AK; Rivera C; Wu CJ; Chan BK; Schmidt G Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1800-7. PubMed ID: 23827639 [TBL] [Abstract][Full Text] [Related]