BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23344021)

  • 1. Chromosome-specific DNA repeats: rapid identification in silico and validation using fluorescence in situ hybridization.
    Hsu JH; Zeng H; Lemke KH; Polyzos AA; Weier JF; Wang M; Lawin-O'Brien AR; Weier HU; O'Brien B
    Int J Mol Sci; 2012 Dec; 14(1):57-71. PubMed ID: 23344021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome-specific DNA repeat probes.
    Baumgartner A; Weier JF; Weier HU
    J Histochem Cytochem; 2006 Dec; 54(12):1363-70. PubMed ID: 16924124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent In Situ Hybridization Using Oligonucleotide-Based Probes.
    Braz GT; Yu F; do Vale Martins L; Jiang J
    Methods Mol Biol; 2020; 2148():71-83. PubMed ID: 32394375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double color in situ hybridization of alpha-satellite chromosome 13, 21 specific cosmid clones for a rapid screening of their specificity.
    Soloviev IV; Yurov YuD ; Vorsanova SG; Malet P; Zerova TE; Buzhievskaya TI
    Tsitol Genet; 1998; 32(4):60-4. PubMed ID: 9813889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability and efficiency of interphase-fish with alpha-satellite probe for detection of aneuploidy.
    Acar H; Yildirim MS; Kaynak M
    Genet Couns; 2002; 13(1):11-7. PubMed ID: 12017232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes.
    Cremer M; Grasser F; Lanctôt C; Müller S; Neusser M; Zinner R; Solovei I; Cremer T
    Methods Mol Biol; 2008; 463():205-39. PubMed ID: 18951171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of monosomy in interphase nuclei and identification of marker chromosomes using biotinylated alpha-satellite DNA probes.
    Kiechle-Schwarz M; Decker HJ; Berger CS; Fiebig HH; Sandberg AA
    Cancer Genet Cytogenet; 1991 Jan; 51(1):23-33. PubMed ID: 1845850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics.
    Iourov IY; Soloviev IV; Vorsanova SG; Monakhov VV; Yurov YB
    J Histochem Cytochem; 2005 Mar; 53(3):401-8. PubMed ID: 15750029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis.
    Lohmann JS; Stougaard M; Koch J
    BMC Mol Biol; 2007 Nov; 8():103. PubMed ID: 17997865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of illegitimate rearrangement within the immunoglobulin locus on 14q32.3 in B-cell malignancies using end-sequenced probes.
    Poulsen TS; Silahtaroglu AN; Gisselø CG; Gaarsdal E; Rasmussen T; Tommerup N; Johnsen HE
    Genes Chromosomes Cancer; 2001 Nov; 32(3):265-74. PubMed ID: 11579466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome localization and orientation of the simple sequence repeat of human satellite I DNA.
    Meyne J; Goodwin EH; Moyzis RK
    Chromosoma; 1994 Apr; 103(2):99-103. PubMed ID: 8055716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Z Naturforsch C J Biosci; 1996; 51(3-4):253-61. PubMed ID: 8639232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A degenerate alpha satellite probe, detecting a centromeric deletion on chromosome 21 in an apparently normal human male, shows limitations of the use of satellite DNA probes for interphase ploidy analysis.
    Weier HU; Gray JW
    Anal Cell Pathol; 1992 Mar; 4(2):81-6. PubMed ID: 1550797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytogenetics and fluorescence in-situ hybridization in detection of hematological malignancies.
    Frenny VJ; Antonella Z; Luisa A; Shah AD; Sheth JJ; Rocchi M
    Indian J Cancer; 2003; 40(4):135-9. PubMed ID: 14716109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of chromosome-specific primers and their use in simple and double PRINS techniques for rapid in situ identification of human chromosomes.
    Pellestor F; Girardet A; Lefort G; Andréo B; Charlieu JP
    Cytogenet Cell Genet; 1995; 70(1-2):138-42. PubMed ID: 7736779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome-specific alpha satellite DNA from the centromere of human chromosome 16.
    Greig GM; England SB; Bedford HM; Willard HF
    Am J Hum Genet; 1989 Dec; 45(6):862-72. PubMed ID: 2573999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative microscopy after fluorescence in situ hybridization - a comparison between repeat-depleted and non-depleted DNA probes.
    Rauch J; Wolf D; Craig JM; Hausmann M; Cremer C
    J Biochem Biophys Methods; 2000 Jul; 44(1-2):59-72. PubMed ID: 10889276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for prenatal diagnosis of trisomy 21 on uncultured amniocytes.
    Romana SP; Tachdjian G; Druart L; Cohen D; Berger R; Chérif D
    Eur J Hum Genet; 1993; 1(3):245-51. PubMed ID: 8044650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.