BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 23344179)

  • 1. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA.
    Belliveau NM; Huft J; Lin PJ; Chen S; Leung AK; Leaver TJ; Wild AW; Lee JB; Taylor RJ; Tam YK; Hansen CL; Cullis PR
    Mol Ther Nucleic Acids; 2012 Aug; 1(8):e37. PubMed ID: 23344179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems.
    Leung AK; Tam YY; Chen S; Hafez IM; Cullis PR
    J Phys Chem B; 2015 Jul; 119(28):8698-706. PubMed ID: 26087393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach.
    Terada T; Kulkarni JA; Huynh A; Chen S; van der Meel R; Tam YYC; Cullis PR
    Langmuir; 2021 Jan; 37(3):1120-1128. PubMed ID: 33439022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core.
    Leung AK; Hafez IM; Baoukina S; Belliveau NM; Zhigaltsev IV; Afshinmanesh E; Tieleman DP; Hansen CL; Hope MJ; Cullis PR
    J Phys Chem C Nanomater Interfaces; 2012 Aug; 116(34):18440-18450. PubMed ID: 22962627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing.
    Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR
    Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration.
    Chen S; Tam YY; Lin PJ; Leung AK; Tam YK; Cullis PR
    J Control Release; 2014 Dec; 196():106-12. PubMed ID: 25285610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device.
    Maeki M; Okada Y; Uno S; Niwa A; Ishida A; Tani H; Tokeshi M
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.
    Chen S; Tam YYC; Lin PJC; Sung MMH; Tam YK; Cullis PR
    J Control Release; 2016 Aug; 235():236-244. PubMed ID: 27238441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of siRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia.
    Connerty P; Moles E; de Bock CE; Jayatilleke N; Smith JL; Meshinchi S; Mayoh C; Kavallaris M; Lock RB
    Pharmaceutics; 2021 Oct; 13(10):. PubMed ID: 34683974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications.
    Walsh C; Ou K; Belliveau NM; Leaver TJ; Wild AW; Huft J; Lin PJ; Chen S; Leung AK; Lee JB; Hansen CL; Taylor RJ; Ramsay EC; Cullis PR
    Methods Mol Biol; 2014; 1141():109-20. PubMed ID: 24567134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid nanoparticle delivery systems for siRNA-based therapeutics.
    Wan C; Allen TM; Cullis PR
    Drug Deliv Transl Res; 2014 Feb; 4(1):74-83. PubMed ID: 25786618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance.
    Zhang J; Pei Y; Zhang H; Wang L; Arrington L; Zhang Y; Glass A; Leone AM
    Mol Pharm; 2013 Jan; 10(1):397-405. PubMed ID: 23210488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA.
    Kulkarni JA; Darjuan MM; Mercer JE; Chen S; van der Meel R; Thewalt JL; Tam YYC; Cullis PR
    ACS Nano; 2018 May; 12(5):4787-4795. PubMed ID: 29614232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Step Production Using a Microfluidic Device of Highly Biocompatible Size-Controlled Noncationic Exosome-like Nanoparticles for RNA Delivery.
    Kimura N; Maeki M; Ishida A; Tani H; Tokeshi M
    ACS Appl Bio Mater; 2021 Feb; 4(2):1783-1793. PubMed ID: 35014524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
    Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ
    Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device.
    Shepherd SJ; Warzecha CC; Yadavali S; El-Mayta R; Alameh MG; Wang L; Weissman D; Wilson JM; Issadore D; Mitchell MJ
    Nano Lett; 2021 Jul; 21(13):5671-5680. PubMed ID: 34189917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the role of helper lipids in lipid nanoparticle formulations of siRNA.
    Kulkarni JA; Witzigmann D; Leung J; Tam YYC; Cullis PR
    Nanoscale; 2019 Nov; 11(45):21733-21739. PubMed ID: 31713568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers.
    Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M
    PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.