These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
659 related articles for article (PubMed ID: 23344940)
21. Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Ferreira AD; Mussatto SI; Cadete RM; Rosa CA; Silva SS Yeast; 2011 Jul; 28(7):547-54. PubMed ID: 21626536 [TBL] [Abstract][Full Text] [Related]
22. Multi-stage high cell continuous fermentation for high productivity and titer. Chang HN; Kim NJ; Kang J; Jeong CM; Choi JD; Fei Q; Kim BJ; Kwon S; Lee SY; Kim J Bioprocess Biosyst Eng; 2011 May; 34(4):419-31. PubMed ID: 21127908 [TBL] [Abstract][Full Text] [Related]
23. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747 [TBL] [Abstract][Full Text] [Related]
24. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae. De Bari I; De Canio P; Cuna D; Liuzzi F; Capece A; Romano P N Biotechnol; 2013 Sep; 30(6):591-7. PubMed ID: 23454083 [TBL] [Abstract][Full Text] [Related]
25. Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. Noguchi T; Tashiro Y; Yoshida T; Zheng J; Sakai K; Sonomoto K J Biosci Bioeng; 2013 Dec; 116(6):716-21. PubMed ID: 23809630 [TBL] [Abstract][Full Text] [Related]
26. Efficient ethanol production from corncob residues by repeated fermentation of an adapted yeast. Fan C; Qi K; Xia XX; Zhong JJ Bioresour Technol; 2013 May; 136():309-15. PubMed ID: 23567696 [TBL] [Abstract][Full Text] [Related]
27. Genetic improvement of native xylose-fermenting yeasts for ethanol production. Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205 [TBL] [Abstract][Full Text] [Related]
28. Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation. Berezka K; Semkiv M; Borbuliak M; Blomqvist J; Linder T; Ruchała J; Dmytruk K; Passoth V; Sibirny A Cell Biol Int; 2021 Mar; 45(3):507-517. PubMed ID: 31829471 [TBL] [Abstract][Full Text] [Related]
29. Effect of cytochrome bc1 complex inhibition during fermentation and growth of Scheffersomyces stipitis using glucose, xylose or arabinose as carbon sources. Granados-Arvizu JA; Madrigal-Perez LA; Canizal-García M; González-Hernández JC; García-Almendárez BE; Regalado-González C FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30500899 [TBL] [Abstract][Full Text] [Related]
30. Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacteriumthermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Lynd LR; Baskaran S; Casten S Biotechnol Prog; 2001; 17(1):118-25. PubMed ID: 11170489 [TBL] [Abstract][Full Text] [Related]
31. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
32. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Unrean P; Nguyen NH Appl Microbiol Biotechnol; 2012 Jun; 94(5):1387-98. PubMed ID: 22526806 [TBL] [Abstract][Full Text] [Related]
33. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043 [TBL] [Abstract][Full Text] [Related]
34. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. Erdei B; Frankó B; Galbe M; Zacchi G J Biotechnol; 2013 Mar; 164(1):50-8. PubMed ID: 23262129 [TBL] [Abstract][Full Text] [Related]
35. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R; Pramanik K Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357 [TBL] [Abstract][Full Text] [Related]
36. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Ezeji TC; Qureshi N; Blaschek HP Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325 [TBL] [Abstract][Full Text] [Related]
37. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Suriyachai N; Weerasaia K; Laosiripojana N; Champreda V; Unrean P Bioresour Technol; 2013 Aug; 142():171-8. PubMed ID: 23735799 [TBL] [Abstract][Full Text] [Related]