These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23345136)

  • 1. Augmented Lagrange methods for quasi-incompressible materials--applications to soft biological tissue.
    Brinkhues S; Klawonn A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2013 Mar; 29(3):332-50. PubMed ID: 23345136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy.
    Brands D; Klawonn A; Rheinbach O; Schröder J
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):569-83. PubMed ID: 18608341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of residual stress on peak cap stress in arteries.
    Vandiver R
    Math Biosci Eng; 2014 Oct; 11(5):1199-214. PubMed ID: 25347810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
    Campos JO; Dos Santos RW; Sundnes J; Rocha BM
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2948. PubMed ID: 29181888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deficiencies in numerical models of anisotropic nonlinearly elastic materials.
    Ní Annaidh A; Destrade M; Gilchrist MD; Murphy JG
    Biomech Model Mechanobiol; 2013 Aug; 12(4):781-91. PubMed ID: 23011411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the stability of cardiac mechanical simulations.
    Land S; Niederer SA; Lamata P; Smith NP
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):939-947. PubMed ID: 25474804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues.
    Gültekin O; Rodoplu B; Dal H
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2357-2373. PubMed ID: 32556738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new finite element method for inverse problems in structural analysis: application to atherosclerotic plaque elasticity reconstruction.
    Bouvier A; Deleaval F; Doyley MM; Tacheau A; Finet G; Le Floc'h S; Cloutier G; Pettigrew RI; Ohayon J
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():16-7. PubMed ID: 25074142
    [No Abstract]   [Full Text] [Related]  

  • 15. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study.
    Wenk JF
    J Biomech Eng; 2011 Jan; 133(1):014503. PubMed ID: 21186905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review.
    Holzapfel GA; Mulvihill JJ; Cunnane EM; Walsh MT
    J Biomech; 2014 Mar; 47(4):859-69. PubMed ID: 24491496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARTreat Project: three-dimensional numerical simulation of plaque formation and development in the arteries.
    Filipovic N; Rosic M; Tanaskovic I; Milosevic Z; Nikolic D; Zdravkovic N; Peulic A; Kojic MR; Fotiadis DI; Parodi O
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):272-8. PubMed ID: 21937352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model.
    Weichert F; Schröder A; Landes C; Shamaa A; Awad SK; Walczak L; Müller H; Wagner M
    Med Biol Eng Comput; 2010 Jun; 48(6):597-610. PubMed ID: 20411435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses.
    Cilla M; Peña E; Martínez MA
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A projection method to extract biological membrane models from 3D material models.
    Roohbakhshan F; Duong TX; Sauer RA
    J Mech Behav Biomed Mater; 2016 May; 58():90-104. PubMed ID: 26455810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.