These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 23345201)
1. Selectivity of CO(2) reduction on copper electrodes: the role of the kinetics of elementary steps. Nie X; Esopi MR; Janik MJ; Asthagiri A Angew Chem Int Ed Engl; 2013 Feb; 52(9):2459-62. PubMed ID: 23345201 [TBL] [Abstract][Full Text] [Related]
2. On the mechanism of low-temperature water gas shift reaction on copper. Gokhale AA; Dumesic JA; Mavrikakis M J Am Chem Soc; 2008 Jan; 130(4):1402-14. PubMed ID: 18181624 [TBL] [Abstract][Full Text] [Related]
3. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. Schouten KJ; Qin Z; Pérez Gallent E; Koper MT J Am Chem Soc; 2012 Jun; 134(24):9864-7. PubMed ID: 22670713 [TBL] [Abstract][Full Text] [Related]
4. Methane oxidation mechanism on Pt(111): a cluster model DFT study. Psofogiannakis G; St-Amant A; Ternan M J Phys Chem B; 2006 Dec; 110(48):24593-605. PubMed ID: 17134220 [TBL] [Abstract][Full Text] [Related]
5. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. Yoshizawa K; Shiota Y J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545 [TBL] [Abstract][Full Text] [Related]
6. Kinetic separation of carbon dioxide and methane on a copper metal-organic framework. Bao Z; Alnemrat S; Yu L; Vasiliev I; Ren Q; Lu X; Deng S J Colloid Interface Sci; 2011 May; 357(2):504-9. PubMed ID: 21392776 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane. Shiota Y; Yoshizawa K Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938 [TBL] [Abstract][Full Text] [Related]
8. Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Viñes F; Lykhach Y; Staudt T; Lorenz MP; Papp C; Steinrück HP; Libuda J; Neyman KM; Görling A Chemistry; 2010 Jun; 16(22):6530-9. PubMed ID: 20419714 [TBL] [Abstract][Full Text] [Related]
9. Quantum chemical study of the catalytic activation of methane by copper oxide and copper hydroxide cations. Rezabal E; Ruipérez F; Ugalde JM Phys Chem Chem Phys; 2013 Jan; 15(4):1148-53. PubMed ID: 23223551 [TBL] [Abstract][Full Text] [Related]
10. Elementary kinetics of nitrogen electroreduction on Fe surfaces. Maheshwari S; Rostamikia G; Janik MJ J Chem Phys; 2019 Jan; 150(4):041708. PubMed ID: 30709282 [TBL] [Abstract][Full Text] [Related]
11. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
12. Modeling CO2 reduction on Pt(111). Shi C; O'Grady CP; Peterson AA; Hansen HA; Nørskov JK Phys Chem Chem Phys; 2013 May; 15(19):7114-22. PubMed ID: 23552398 [TBL] [Abstract][Full Text] [Related]
13. Identification of a copper(I) intermediate in the conversion of 1-aminocyclopropane carboxylic acid (ACC) into ethylene by Cu(II)-ACC complexes and hydrogen peroxide. Ghattas W; Giorgi M; Mekmouche Y; Tanaka T; Rockenbauer A; Réglier M; Hitomi Y; Simaan AJ Inorg Chem; 2008 Jun; 47(11):4627-38. PubMed ID: 18442237 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory effects of Cu (II) on fermentative methane production using bamboo wastewater as substrate. Wu D; Yang Z; Tian G J Hazard Mater; 2011 Nov; 195():170-4. PubMed ID: 21880423 [TBL] [Abstract][Full Text] [Related]
15. Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. Chen PP; Chan SI J Inorg Biochem; 2006 Apr; 100(4):801-9. PubMed ID: 16494948 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). Xiao H; Cheng T; Goddard WA; Sundararaman R J Am Chem Soc; 2016 Jan; 138(2):483-6. PubMed ID: 26716884 [TBL] [Abstract][Full Text] [Related]
17. Mononuclear and binuclear copper(I) complexes ligated by bis(3,5-diisopropyl-1-pyrazolyl)methane: insight into the fundamental coordination chemistry of three-coordinate copper(I) complexes with a neutral coligand. Fujisawa K; Noguchi Y; Miyashita Y; Okamoto K; Lehnert N Inorg Chem; 2007 Dec; 46(25):10607-23. PubMed ID: 17999490 [TBL] [Abstract][Full Text] [Related]
18. Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 4. UV-visible spectral and electrochemical evidence of the remarkable electron-deficient properties of the new tetrakis-2,3-[5,6-di{2-(N-methyl)pyridiniumyl}pyrazino]porphyrazinatometal octacations, [(2-Mepy)8TPyzPzM]8+ (M = MgII(H2O), CoII, CuII, ZnII). Bergami C; Donzello MP; Monacelli F; Ercolani C; Kadish KM Inorg Chem; 2005 Dec; 44(26):9862-73. PubMed ID: 16363857 [TBL] [Abstract][Full Text] [Related]
19. Assessing the whole range of CuAAC mechanisms by DFT calculations--on the intermediacy of copper acetylides. Cantillo D; Ávalos M; Babiano R; Cintas P; Jiménez JL; Palacios JC Org Biomol Chem; 2011 Apr; 9(8):2952-8. PubMed ID: 21380437 [TBL] [Abstract][Full Text] [Related]
20. The CO formation reaction pathway in steam methane reforming by rhodium. van Grootel PW; Hensen EJ; van Santen RA Langmuir; 2010 Nov; 26(21):16339-48. PubMed ID: 20919687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]