BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23345208)

  • 1. Cortical adaptation to a chronic micro-electrocorticographic brain computer interface.
    Rouse AG; Williams JJ; Wheeler JJ; Moran DW
    J Neurosci; 2013 Jan; 33(4):1326-30. PubMed ID: 23345208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal Activity Distributed in Multiple Cortical Areas during Voluntary Control of the Native Arm or a Brain-Computer Interface.
    Liu Z; Schieber MH
    eNeuro; 2020; 7(5):. PubMed ID: 33060178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural adaptation of epidural electrocorticographic (EECoG) signals during closed-loop brain computer interface (BCI) tasks.
    Rouse AG; Moran DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5514-7. PubMed ID: 19964124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable online control of an electrocorticographic brain-computer interface using a static decoder.
    Ashmore RC; Endler BM; Smalianchuk I; Degenhart AD; Hatsopoulos NG; Tyler-Kabara EC; Batista AP; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1740-4. PubMed ID: 23366246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI.
    Williams JJ; Rouse AG; Thongpang S; Williams JC; Moran DW
    J Neural Eng; 2013 Aug; 10(4):046001. PubMed ID: 23715295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings.
    Bundy DT; Zellmer E; Gaona CM; Sharma M; Szrama N; Hacker C; Freudenburg ZV; Daitch A; Moran DW; Leuthardt EC
    J Neural Eng; 2014 Feb; 11(1):016006. PubMed ID: 24654268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking.
    Luu TP; Nakagome S; He Y; Contreras-Vidal JL
    Sci Rep; 2017 Aug; 7(1):8895. PubMed ID: 28827542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed cortical adaptation during learning of a brain-computer interface task.
    Wander JD; Blakely T; Miller KJ; Weaver KE; Johnson LA; Olson JD; Fetz EE; Rao RP; Ojemann JG
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10818-23. PubMed ID: 23754426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent control of a brain-computer interface and natural overt movements.
    Bashford L; Wu J; Sarma D; Collins K; Rao RPN; Ojemann JG; Mehring C
    J Neural Eng; 2018 Dec; 15(6):066021. PubMed ID: 30303130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Long-Term BCI Study With ECoG Recordings in Freely Moving Rats.
    Costecalde T; Aksenova T; Torres-Martinez N; Eliseyev A; Mestais C; Moro C; Benabid AL
    Neuromodulation; 2018 Feb; 21(2):149-159. PubMed ID: 28685918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroanatomical correlates of brain-computer interface performance.
    Kasahara K; DaSalla CS; Honda M; Hanakawa T
    Neuroimage; 2015 Apr; 110():95-100. PubMed ID: 25659465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma-band modulation in the human amygdala during reaching movements.
    Gogia AS; Martin Del Campo-Vera R; Chen KH; Sebastian R; Nune G; Kramer DR; Lee MB; Tafreshi AR; Barbaro MF; Liu CY; Kellis S; Lee B
    Neurosurg Focus; 2020 Jul; 49(1):E4. PubMed ID: 32610288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interfaces using electrocorticographic signals.
    Schalk G; Leuthardt EC
    IEEE Rev Biomed Eng; 2011; 4():140-54. PubMed ID: 22273796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interface control along instructed paths.
    Sadtler PT; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP
    J Neural Eng; 2015 Feb; 12(1):016015. PubMed ID: 25605498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.
    Blakely TM; Olson JD; Miller KJ; Rao RP; Ojemann JG
    Brain Comput Interfaces (Abingdon); 2014 Jul; 1(3-4):147-157. PubMed ID: 25599079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface.
    Rouse AG; Williams JJ; Wheeler JJ; Moran DW
    J Neural Eng; 2016 Oct; 13(5):056018. PubMed ID: 27651034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.