These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23345208)

  • 21. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical Topography of Error-Related High-Frequency Potentials During Erroneous Control in a Continuous Control Brain-Computer Interface.
    Wilson NR; Sarma D; Wander JD; Weaver KE; Ojemann JG; Rao RPN
    Front Neurosci; 2019; 13():502. PubMed ID: 31191218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill.
    Wander JD; Sarma D; Johnson LA; Fetz EE; Rao RP; Ojemann JG; Darvas F
    PLoS Comput Biol; 2016 Aug; 12(8):e1004931. PubMed ID: 27541829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stereoelectroencephalography for continuous two-dimensional cursor control in a brain-machine interface.
    Vadera S; Marathe AR; Gonzalez-Martinez J; Taylor DM
    Neurosurg Focus; 2013 Jun; 34(6):E3. PubMed ID: 23724837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface.
    Trautmann EM; O'Shea DJ; Sun X; Marshel JH; Crow A; Hsueh B; Vesuna S; Cofer L; Bohner G; Allen W; Kauvar I; Quirin S; MacDougall M; Chen Y; Whitmire MP; Ramakrishnan C; Sahani M; Seidemann E; Ryu SI; Deisseroth K; Shenoy KV
    Nat Commun; 2021 Jun; 12(1):3689. PubMed ID: 34140486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BCI Use and Its Relation to Adaptation in Cortical Networks.
    Casimo K; Weaver KE; Wander J; Ojemann JG
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1697-1704. PubMed ID: 28320670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of age on human motor electrocorticographic signals and implications for brain-computer interface applications.
    Roland J; Miller K; Freudenburg Z; Sharma M; Smyth M; Gaona C; Breshears J; Corbetta M; Leuthardt EC
    J Neural Eng; 2011 Aug; 8(4):046013. PubMed ID: 21666287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An artificial intelligence that increases simulated brain-computer interface performance.
    Olsen S; Zhang J; Liang KF; Lam M; Riaz U; Kao JC
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33978599
    [No Abstract]   [Full Text] [Related]  

  • 31. Simplified EEG inverse solution for BCI real-time implementation.
    Duque-Munoz L; Vargas F; Lopez JD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4051-4054. PubMed ID: 28269172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans.
    Schalk G; Kubánek J; Miller KJ; Anderson NR; Leuthardt EC; Ojemann JG; Limbrick D; Moran D; Gerhardt LA; Wolpaw JR
    J Neural Eng; 2007 Sep; 4(3):264-75. PubMed ID: 17873429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of a visual keyboard using an electrocorticographic brain-computer interface.
    Krusienski DJ; Shih JJ
    Neurorehabil Neural Repair; 2011 May; 25(4):323-31. PubMed ID: 20921326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using the electrocorticographic speech network to control a brain-computer interface in humans.
    Leuthardt EC; Gaona C; Sharma M; Szrama N; Roland J; Freudenberg Z; Solis J; Breshears J; Schalk G
    J Neural Eng; 2011 Jun; 8(3):036004. PubMed ID: 21471638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Volitional control of single cortical neurons in a brain-machine interface.
    Moritz CT; Fetz EE
    J Neural Eng; 2011 Apr; 8(2):025017. PubMed ID: 21436531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000.
    Wilson JA; Schalk G; Walton LM; Williams JC
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19641479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.
    Halder S; Leinfelder T; Schulz SM; Kübler A
    Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.
    Pahwa M; Kusner M; Hacker CD; Bundy DT; Weinberger KQ; Leuthardt EC
    PLoS One; 2015; 10(11):e0142947. PubMed ID: 26562013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.