These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23345266)

  • 1. A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model.
    Michler C; Cookson AN; Chabiniok R; Hyde E; Lee J; Sinclair M; Sochi T; Goyal A; Vigueras G; Nordsletten DA; Smith NP
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):217-32. PubMed ID: 23345266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media.
    Rohan E; Lukeš V; Jonášová A
    J Math Biol; 2018 Aug; 77(2):421-454. PubMed ID: 29368273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics.
    Cookson AN; Lee J; Michler C; Chabiniok R; Hyde E; Nordsletten DA; Sinclair M; Siebes M; Smith NP
    J Biomech; 2012 Mar; 45(5):850-5. PubMed ID: 22154392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three dimensional modelling of interaction between surface and Darcy flow regimes through soils.
    Kaveh-Baghbaderani B; Nassehi V; Kulkarni A
    Water Sci Technol; 2009; 60(7):1911-8. PubMed ID: 19809155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-scale modeling of competitive adsorption in porous media.
    Ryan EM; Tartakovsky AM; Amon C
    J Contam Hydrol; 2011 Mar; 120-121():56-78. PubMed ID: 20691495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical simulation of electroacoustic borehole logging in a fluid-saturated porous formation.
    Hu H; Guan W; Harris JM
    J Acoust Soc Am; 2007 Jul; 122(1):135-45. PubMed ID: 17614473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and computational analysis of 3D radiative stagnation point flow of Darcy-Forchheimer subject to suction/injection.
    Shah F; Khan MI; Hayat T; Khan MI; Alsaedi A
    Comput Methods Programs Biomed; 2020 Feb; 184():105104. PubMed ID: 31627145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ocular shape and vascular geometry on retinal hemodynamics: a computational model.
    Dziubek A; Guidoboni G; Harris A; Hirani AN; Rusjan E; Thistleton W
    Biomech Model Mechanobiol; 2016 Aug; 15(4):893-907. PubMed ID: 26445874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of air flow through a biofilter with heterogeneous porous media.
    Yan WW; Liu Y; Xu YS; Yang XL
    Bioresour Technol; 2008 May; 99(7):2156-61. PubMed ID: 17606368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.
    Hyde ER; Michler C; Lee J; Cookson AN; Chabiniok R; Nordsletten DA; Smith NP
    Med Biol Eng Comput; 2013 May; 51(5):557-70. PubMed ID: 23345008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upscaling the porosity-permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning.
    Menke HP; Maes J; Geiger S
    Sci Rep; 2021 Jan; 11(1):2625. PubMed ID: 33514764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Darcy behavior of two-phase channel flow.
    Xu X; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023010. PubMed ID: 25215823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.
    Peng X; Liu Y; Liang B; Du Z
    PLoS One; 2017; 12(5):e0177187. PubMed ID: 28542612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-scale parameterisation of a myocardial perfusion model using whole-organ arterial networks.
    Hyde ER; Cookson AN; Lee J; Michler C; Goyal A; Sochi T; Chabiniok R; Sinclair M; Nordsletten DA; Spaan J; van den Wijngaard JP; Siebes M; Smith NP
    Ann Biomed Eng; 2014 Apr; 42(4):797-811. PubMed ID: 24297493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.
    Aziz A; Ali Y; Aziz T; Siddique JI
    PLoS One; 2015; 10(9):e0138855. PubMed ID: 26407162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.