These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2334529)

  • 1. The use of magnetic resonance imaging to assess slow fluid flow in a model cerebrospinal fluid shunt system.
    Frank E; Buonocore M; Hein L
    Br J Neurosurg; 1990; 4(1):53-7. PubMed ID: 2334529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of position on magnetic resonance evaluation of cerebrospinal fluid shunt function.
    Frank E; Buonocore M; Hein L
    Neurol Res; 1994 Jun; 16(3):168-70. PubMed ID: 7936083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance imaging analysis of extremely slow flow in a model shunt system.
    Frank E; Buonocore M; Hein L
    Childs Nerv Syst; 1992 Mar; 8(2):73-5. PubMed ID: 1591749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shunt flow measurement and evaluation of valve oscillation with a spin-echo phase-contrast MR sequence.
    Norbash AM; Pelc NJ; Shimakawa A; Enzmann DR
    Radiology; 1994 Feb; 190(2):560-4. PubMed ID: 8284416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Magnetic resonance tomographic imaging of pulsatile CSF movement in communicating hydrocephalus before and after shunt placement].
    Goldmann A; Kunz U; Rotermund G; Friedrich JM; Schnarkowski P
    Rofo; 1992 Dec; 157(6):555-60. PubMed ID: 1457791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Protein Concentration on the Flow of Cerebrospinal Fluid Through Shunt Tubing.
    Cheatle JT; Bowder AN; Tefft JL; Agrawal SK; Hellbusch LC
    Neurosurgery; 2015 Dec; 77(6):972-8. PubMed ID: 26270195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative noninvasive measurement of cerebrospinal fluid flow in shunted hydrocephalus.
    Ha JH; Borzage MT; Vanstrum EB; Doyle EK; Upreti M; Tamrazi B; Nelson M; Blüml S; Johal MS; McComb JG; Chu J; Durham S; Krieger MD; Moats RA; Chiarelli PA
    J Neurosurg; 2024 Apr; 140(4):1117-1128. PubMed ID: 38564811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow characteristics of cerebrospinal fluid shunt tubing.
    Cheatle JT; Bowder AN; Agrawal SK; Sather MD; Hellbusch LC
    J Neurosurg Pediatr; 2012 Feb; 9(2):191-7. PubMed ID: 22295926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR evaluation of flow in a ventricular shunt phantom with in vivo correlation.
    Savader SJ; Savader BL; Murtagh FR; Clarke LP; Silbiger ML
    J Comput Assist Tomogr; 1988; 12(5):765-9. PubMed ID: 3170837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-sensitive MR imaging of ventriculoperitoneal shunts: in vitro findings, clinical applications, and pitfalls.
    Castillo M; Hudgins PA; Malko JA; Burrow BK; Hoffman JC
    AJNR Am J Neuroradiol; 1991; 12(4):667-71. PubMed ID: 1882741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-Contrast MRI Detection of Ventricular Shunt CSF Flow: Proof of Principle.
    König RE; Stucht D; Baecke S; Rashidi A; Speck O; Sandalcioglu IE; Luchtmann M
    J Neuroimaging; 2020 Nov; 30(6):746-753. PubMed ID: 33146931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrospinal fluid shunts: flow measurements with MR imaging.
    Martin AJ; Drake JM; Lemaire C; Henkelman RM
    Radiology; 1989 Oct; 173(1):243-7. PubMed ID: 2781015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring CSF shunt flow with MRI using flow enhancement of signal intensity (FENSI).
    Zhang M; Olivero WC; Huston JM; Pappu S; Arnold PM; Biswas A; Anderson AT; Sutton BP
    Magn Reson Med; 2024 Aug; 92(2):807-819. PubMed ID: 38469904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of computed tomography or magnetic resonance imaging evaluation of ventricular morphology in suspected cerebrospinal fluid shunt malfunction.
    Sellin JN; Cherian J; Barry JM; Ryan SL; Luerssen TG; Jea A
    J Neurosurg Pediatr; 2014 Aug; 14(2):160-6. PubMed ID: 24856881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Percutaneous endoscopic recanalization of the catheter: a new technique of proximal shunt revision.
    Pattisapu JV; Trumble ER; Taylor KR; Howard PD; Kovach TM
    Neurosurgery; 1999 Dec; 45(6):1361-6; discussion 1366-7. PubMed ID: 10598704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices.
    Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C
    Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of Ventricular Shunts.
    Maller VV; Agarwal A; Kanekar S
    Semin Ultrasound CT MR; 2016 Apr; 37(2):159-73. PubMed ID: 27063666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus.
    Tuli S; O'Hayon B; Drake J; Clarke M; Kestle J
    Neurosurgery; 1999 Dec; 45(6):1329-33; discussion 1333-5. PubMed ID: 10598700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of cerebrospinal fluid shunts: part II: overdrainage, loculation, and abdominal complications.
    Browd SR; Gottfried ON; Ragel BT; Kestle JR
    Pediatr Neurol; 2006 Mar; 34(3):171-6. PubMed ID: 16504785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.