These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23345443)

  • 1. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation.
    Beke-Somfai T; Lincoln P; Nordén B
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2117-22. PubMed ID: 23345443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor.
    La T; Clark-Walker GD; Wang X; Wilkens S; Chen XJ
    Eukaryot Cell; 2013 Nov; 12(11):1451-61. PubMed ID: 24014764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical control of ATP synthase function: activation energy difference between tight and loose binding sites.
    Beke-Somfai T; Lincoln P; Nordén B
    Biochemistry; 2010 Jan; 49(3):401-3. PubMed ID: 20000803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
    Keis S; Stocker A; Dimroth P; Cook GM
    J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the regulatory function of the
    Krah A; Zarco-Zavala M; McMillan DGG
    Open Biol; 2018 May; 8(5):. PubMed ID: 29769322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    Med Hypotheses; 2015 Jan; 84(1):53-7. PubMed ID: 25497387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.
    Bulygin VV; Duncan TM; Cross RL
    J Biol Chem; 2004 Aug; 279(34):35616-21. PubMed ID: 15199054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the ATP synthase from
    Montgomery MG; Petri J; Spikes TE; Walker JE
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notes on the mechanism of ATP synthesis.
    Bianchet MA; Pedersen PL; Amzel LM
    J Bioenerg Biomembr; 2000 Oct; 32(5):517-21. PubMed ID: 15254387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid hydrolysis of ATP by mitochondrial F1-ATPase correlates with the filling of the second of three catalytic sites.
    Milgrom YM; Cross RL
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13831-6. PubMed ID: 16172372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F₁-ATPase.
    Czub J; Grubmüller H
    J Am Chem Soc; 2014 May; 136(19):6960-8. PubMed ID: 24798048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP.
    Krah A; van der Hoeven B; Mestrom L; Tonin F; Knobel KCC; Bond PJ; McMillan DGG
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129766. PubMed ID: 33069831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F
    Dai L; Flechsig H; Yu J
    Biophys J; 2017 Oct; 113(7):1440-1453. PubMed ID: 28978438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward an adequate scheme for the ATP synthase catalysis.
    Boyer PD
    Biochemistry (Mosc); 2001 Oct; 66(10):1058-66. PubMed ID: 11736627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca
    Giorgio V; Burchell V; Schiavone M; Bassot C; Minervini G; Petronilli V; Argenton F; Forte M; Tosatto S; Lippe G; Bernardi P
    EMBO Rep; 2017 Jul; 18(7):1065-1076. PubMed ID: 28507163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism.
    Nam K; Pu J; Karplus M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17851-6. PubMed ID: 25453082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.
    Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.