These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23345443)

  • 21. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics.
    Iino R; Noji H
    IUBMB Life; 2013 Mar; 65(3):238-46. PubMed ID: 23341301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Na(+)-translocating F₁F₀-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus.
    Mesbah NM; Wiegel J
    Biochim Biophys Acta; 2011 Sep; 1807(9):1133-42. PubMed ID: 21600188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.
    Stocker A; Keis S; Vonck J; Cook GM; Dimroth P
    Structure; 2007 Aug; 15(8):904-14. PubMed ID: 17697996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial ATP synthase catalytic mechanism: a novel visual comparative structural approach emphasizes pivotal roles for Mg²⁺ and P-loop residues in making ATP.
    Blum DJ; Ko YH; Pedersen PL
    Biochemistry; 2012 Feb; 51(7):1532-46. PubMed ID: 22243519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP synthases in the year 2000: defining the different levels of mechanism and getting a grip on each.
    Pedersen PL; Ko YH; Hong S
    J Bioenerg Biomembr; 2000 Oct; 32(5):423-32. PubMed ID: 15254377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osmomechanics of the Propionigenium modestum F(o) motor.
    Dimroth P; Matthey U; Kaim G
    J Bioenerg Biomembr; 2000 Oct; 32(5):449-58. PubMed ID: 15254380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and kinetics characterization of the F
    Esparza-Perusquía M; Olvera-Sánchez S; Pardo JP; Mendoza-Hernández G; Martínez F; Flores-Herrera O
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):975-981. PubMed ID: 28919501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    J Membr Biol; 2016 Apr; 249(1-2):11-21. PubMed ID: 26621635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP-driven rotation of the gamma subunit in F(1)-ATPase.
    Weber J; Nadanaciva S; Senior AE
    FEBS Lett; 2000 Oct; 483(1):1-5. PubMed ID: 11033345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme.
    Tsunoda SP; Rodgers AJ; Aggeler R; Wilce MC; Yoshida M; Capaldi RA
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6560-4. PubMed ID: 11381110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation.
    Sekiya M; Hosokawa H; Nakanishi-Matsui M; Al-Shawi MK; Nakamoto RK; Futai M
    J Biol Chem; 2010 Dec; 285(53):42058-67. PubMed ID: 20974856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase.
    Kucharczyk R; Ezkurdia N; Couplan E; Procaccio V; Ackerman SH; Blondel M; di Rago JP
    Biochim Biophys Acta; 2010; 1797(6-7):1105-12. PubMed ID: 20056103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and Mechanisms of F-Type ATP Synthases.
    Kühlbrandt W
    Annu Rev Biochem; 2019 Jun; 88():515-549. PubMed ID: 30901262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purified F-ATP synthase forms a Ca
    Urbani A; Giorgio V; Carrer A; Franchin C; Arrigoni G; Jiko C; Abe K; Maeda S; Shinzawa-Itoh K; Bogers JFM; McMillan DGG; Gerle C; Szabò I; Bernardi P
    Nat Commun; 2019 Sep; 10(1):4341. PubMed ID: 31554800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane plasticity facilitates recognition of the inhibitor oligomycin by the mitochondrial ATP synthase rotor.
    Zhou W; Faraldo-Gómez JD
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):789-796. PubMed ID: 29630891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic control and coupling efficiency of the Escherichia coli FoF1 ATP synthase: influence of the Fo sector and epsilon subunit on the catalytic transition state.
    Peskova YB; Nakamoto RK
    Biochemistry; 2000 Sep; 39(38):11830-6. PubMed ID: 10995251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP synthases: insights into their motor functions from sequence and structural analyses.
    Hong S; Pedersen PL
    J Bioenerg Biomembr; 2003 Apr; 35(2):95-120. PubMed ID: 12887009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural organization of mitochondrial ATP synthase.
    Wittig I; Schägger H
    Biochim Biophys Acta; 2008; 1777(7-8):592-8. PubMed ID: 18485888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.