BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 23345537)

  • 1. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems.
    Albrethsen J; Agner J; Piersma SR; Højrup P; Pham TV; Weldingh K; Jimenez CR; Andersen P; Rosenkrands I
    Mol Cell Proteomics; 2013 May; 12(5):1180-91. PubMed ID: 23345537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influence of cultivation conditions on the proteomic profile of Mycobacterium tuberculosis H37RV].
    Bespyatykh JA; Manicheva OA; Smolyakov AV; Dogonadze MZ; Zhuravlev VY; Shitikov EA; Ilina EN
    Biomed Khim; 2017 Jul; 63(4):334-340. PubMed ID: 28862605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation.
    Gopinath V; Raghunandanan S; Gomez RL; Jose L; Surendran A; Ramachandran R; Pushparajan AR; Mundayoor S; Jaleel A; Kumar RA
    Mol Cell Proteomics; 2015 Aug; 14(8):2160-76. PubMed ID: 26025969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate.
    Tucci P; Portela M; Chetto CR; González-Sapienza G; Marín M
    PLoS One; 2020; 15(3):e0221837. PubMed ID: 32126063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling.
    Betts JC; Lukey PT; Robb LC; McAdam RA; Duncan K
    Mol Microbiol; 2002 Feb; 43(3):717-31. PubMed ID: 11929527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research.
    Bell C; Smith GT; Sweredoski MJ; Hess S
    J Proteome Res; 2012 Jan; 11(1):119-30. PubMed ID: 22053987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase G confers survival advantage to
    Khan MZ; Bhaskar A; Upadhyay S; Kumari P; Rajmani RS; Jain P; Singh A; Kumar D; Bhavesh NS; Nandicoori VK
    J Biol Chem; 2017 Sep; 292(39):16093-16108. PubMed ID: 28821621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic profile of Mycobacterium tuberculosis after eupomatenoid-5 induction reveals potential drug targets.
    Ghiraldi-Lopes LD; Campanerut-Sá PA; Meneguello JE; Seixas FA; Lopes-Ortiz MA; Scodro RB; Pires CT; da Silva RZ; Siqueira VL; Nakamura CV; Cardoso RF
    Future Microbiol; 2017 Aug; 12():867-879. PubMed ID: 28686056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic changes in Mycobacterium tuberculosis H37Rv under hyperglycemic conditions favour its growth through altered expression of Tgs3(Rv3234c) and supportive proteins (Rv0547c, AcrA1 and Mpa).
    Kundu J; Verma A; Verma I; Bhadada SK; Sharma S
    Tuberculosis (Edinb); 2019 Mar; 115():154-160. PubMed ID: 30948171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of differentially expressed proteins in late-stationary growth phase of Mycobacterium tuberculosis H37Rv.
    Ang KC; Ibrahim P; Gam LH
    Biotechnol Appl Biochem; 2014; 61(2):153-64. PubMed ID: 23826872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Serine/threonine kinase PknL, is involved in the adaptive response of Mycobacterium tuberculosis.
    Refaya AK; Sharma D; Kumar V; Bisht D; Narayanan S
    Microbiol Res; 2016 Sep; 190():1-11. PubMed ID: 27393993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition.
    Korch SB; Malhotra V; Contreras H; Clark-Curtiss JE
    J Microbiol; 2015 Nov; 53(11):783-95. PubMed ID: 26502963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis.
    Parandhaman DK; Sharma P; Bisht D; Narayanan S
    Life Sci; 2014 Jul; 109(2):116-26. PubMed ID: 24972353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis.
    Lee J; Kim SH; Choi DS; Lee JS; Kim DK; Go G; Park SM; Kim SH; Shin JH; Chang CL; Gho YS
    Proteomics; 2015 Oct; 15(19):3331-7. PubMed ID: 26201501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic and morphological changes produced by subinhibitory concentration of isoniazid in Mycobacterium tuberculosis.
    Campanerut-Sá PA; Ghiraldi-Lopes LD; Meneguello JE; Fiorini A; Evaristo GP; Siqueira VL; Scodro RB; Patussi EV; Donatti L; Souza EM; Cardoso RF
    Future Microbiol; 2016 Sep; 11():1123-32. PubMed ID: 27545345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The adaptation of mycoplasmas to stress conditions: features of proteome shift in Mycoplasma hominis PG37 under starvation and low temperature].
    Chernov VM; Chernova OA; Baranova NB; Gorshkov OV; Medvedeva ES; Shaĭmardanova GF
    Mol Biol (Mosk); 2011; 45(5):914-23. PubMed ID: 22393789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomic profiles reveal characteristic Mycobacterium tuberculosis proteins induced by cholesterol during dormancy conditions.
    Garcia-Morales L; Leon-Solis L; Monroy-Muñoz IE; Talavera-Paulin M; Serafin-López J; Estrada-Garcia I; Rivera-Gutierrez S; Cerna-Cortes JF; Helguera-Repetto AC; Gonzalez-Y-Merchand JA
    Microbiology (Reading); 2017 Aug; 163(8):1237-1247. PubMed ID: 28771131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretome profile analysis of hypervirulent Mycobacterium tuberculosis CPT31 reveals increased production of EsxB and proteins involved in adaptation to intracellular lifestyle.
    Vargas-Romero F; Guitierrez-Najera N; Mendoza-Hernández G; Ortega-Bernal D; Hernández-Pando R; Castañón-Arreola M
    Pathog Dis; 2016 Mar; 74(2):. PubMed ID: 26733498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival during long-term starvation: global proteomics analysis of Geobacter sulfurreducens under prolonged electron-acceptor limitation.
    Bansal R; Helmus RA; Stanley BA; Zhu J; Liermann LJ; Brantley SL; Tien M
    J Proteome Res; 2013 Oct; 12(10):4316-26. PubMed ID: 23980722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.
    Xie L; Wang X; Zeng J; Zhou M; Duan X; Li Q; Zhang Z; Luo H; Pang L; Li W; Liao G; Yu X; Li Y; Huang H; Xie J
    Int J Biochem Cell Biol; 2015 Feb; 59():193-202. PubMed ID: 25456444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.