BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23345720)

  • 1. Slow relaxation process in DNA at different levels of hydration.
    Sokolov AP; Grimm H; Kisliuk A; Dianoux AJ
    J Biol Phys; 2000 Sep; 26(3):1-5. PubMed ID: 23345720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow relaxation process in DNA.
    Sokolov AP; Grimm H; Kisliuk A; Dianoux AJ
    J Biol Phys; 2001 Dec; 27(4):313-27. PubMed ID: 23345751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data.
    Loncharich RJ; Brooks BR
    J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data.
    Khodadadi S; Pawlus S; Sokolov AP
    J Phys Chem B; 2008 Nov; 112(45):14273-80. PubMed ID: 18942780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering.
    Cusack S; Doster W
    Biophys J; 1990 Jul; 58(1):243-51. PubMed ID: 2166599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer.
    Chu XQ; Fratini E; Baglioni P; Faraone A; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011908. PubMed ID: 18351877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common features in the microscopic dynamics of hydration water on organic and inorganic surfaces.
    Mamontov E; O'Neill H; Zhang Q; Wang W; Wesolowski DJ
    J Phys Condens Matter; 2012 Feb; 24(6):064104. PubMed ID: 22277314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the dynamic transition in proteins.
    Khodadadi S; Pawlus S; Roh JH; Garcia Sakai V; Mamontov E; Sokolov AP
    J Chem Phys; 2008 May; 128(19):195106. PubMed ID: 18500904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration affects both harmonic and anharmonic nature of protein dynamics.
    Nakagawa H; Joti Y; Kitao A; Kataoka M
    Biophys J; 2008 Sep; 95(6):2916-23. PubMed ID: 18556761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydration on the dynamics of lysozyme.
    Roh JH; Curtis JE; Azzam S; Novikov VN; Peral I; Chowdhuri Z; Gregory RB; Sokolov AP
    Biophys J; 2006 Oct; 91(7):2573-88. PubMed ID: 16844746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation.
    Ngai KL; Capaccioli S; Paciaroni A
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3553-3563. PubMed ID: 27155356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules.
    Capaccioli S; Ngai KL; Ancherbak S; Bertoldo M; Ciampalini G; Thayyil MS; Wang LM
    J Chem Phys; 2019 Jul; 151(3):034504. PubMed ID: 31325935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A broad glass transition in hydrated proteins.
    Khodadadi S; Malkovskiy A; Kisliuk A; Sokolov AP
    Biochim Biophys Acta; 2010 Jan; 1804(1):15-9. PubMed ID: 19539792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water.
    Chen SH; Liu L; Chu X; Zhang Y; Fratini E; Baglioni P; Faraone A; Mamontov E
    J Chem Phys; 2006 Nov; 125(17):171103. PubMed ID: 17100421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering.
    Yoshida K; Baron AQ; Uchiyama H; Tsutsui S; Yamaguchi T
    J Chem Phys; 2016 Apr; 144(13):134505. PubMed ID: 27059578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of protein and hydration-water dynamics in biological membranes.
    Wood K; Plazanet M; Gabel F; Kessler B; Oesterhelt D; Tobias DJ; Zaccai G; Weik M
    Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18049-54. PubMed ID: 17986611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP.
    Nickels JD; O'Neill H; Hong L; Tyagi M; Ehlers G; Weiss KL; Zhang Q; Yi Z; Mamontov E; Smith JC; Sokolov AP
    Biophys J; 2012 Oct; 103(7):1566-75. PubMed ID: 23062349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration water and peptide dynamics--two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures.
    Bastos M; Alves N; Maia S; Gomes P; Inaba A; Miyazaki Y; Zanotti JM
    Phys Chem Chem Phys; 2013 Oct; 15(39):16693-703. PubMed ID: 23986181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water dynamics as affected by interaction with biomolecules and change of thermodynamic state: a neutron scattering study.
    Orecchini A; Paciaroni A; Petrillo C; Sebastiani F; De Francesco A; Sacchetti F
    J Phys Condens Matter; 2012 Feb; 24(6):064105. PubMed ID: 22277348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of coexistence of change of caged dynamics at T(g) and the dynamic transition at T(d) in solvated proteins.
    Capaccioli S; Ngai KL; Ancherbak S; Paciaroni A
    J Phys Chem B; 2012 Feb; 116(6):1745-57. PubMed ID: 22239251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.