These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23345760)

  • 1. On the charge and molecule based summations of solvent electrostatic potentials and the validity of electrostatic linear response in water.
    Satheesan Babu C; Yang PK; Lim C
    J Biol Phys; 2002 Jun; 28(2):95-113. PubMed ID: 23345760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobility of large ions in water.
    Samanta T; Matyushov DV
    J Chem Phys; 2020 Jul; 153(4):044503. PubMed ID: 32752691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Langevin-Poisson-EQT: A dipolar solvent based quasi-continuum approach for electric double layers.
    Mashayak SY; Aluru NR
    J Chem Phys; 2017 Jan; 146(4):044108. PubMed ID: 28147543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of excluded solvent volume effects in computing hydration free energies.
    Yang PK; Lim C
    J Phys Chem B; 2008 Nov; 112(47):14863-8. PubMed ID: 18956834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field.
    Swanson JM; Adcock SA; McCammon JA
    J Chem Theory Comput; 2005 May; 1(3):484-93. PubMed ID: 26641515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy using three layers of surface charge for computing solvation free energy of ions.
    Yang PK
    Biophys Chem; 2013 Dec; 184():87-94. PubMed ID: 24157373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N; Datta SN
    J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids.
    Kastenholz MA; Hünenberger PH
    J Chem Phys; 2006 Mar; 124(12):124106. PubMed ID: 16599661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic strength independence of charge distributions in solvation of biomolecules.
    Virtanen JJ; Sosnick TR; Freed KF
    J Chem Phys; 2014 Dec; 141(22):22D503. PubMed ID: 25494774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating excluded solvent volume and physical dipoles for computing solvation free energy.
    Yang PK
    J Mol Model; 2015 Jul; 21(7):180. PubMed ID: 26113115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing pKa Values in Different Solvents by Electrostatic Transformation.
    Rossini E; Netz RR; Knapp EW
    J Chem Theory Comput; 2016 Jul; 12(7):3360-9. PubMed ID: 27310667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range electrostatic interactions in hybrid quantum and molecular mechanical dynamics using a lattice summation approach.
    Dehez F; Martins-Costa MT; Rinaldi D; Millot C
    J Chem Phys; 2005 Jun; 122(23):234503. PubMed ID: 16008458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.