These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23345789)

  • 1. Cell Simulation for Circadian Rhythm Based on Michaelis-MentenModel.
    Sabau SV; Hashimoto S; Nemoto Y; Ihara S
    J Biol Phys; 2002 Sep; 28(3):465-9. PubMed ID: 23345789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM.
    Sidote D; Majercak J; Parikh V; Edery I
    Mol Cell Biol; 1998 Apr; 18(4):2004-13. PubMed ID: 9528772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlocked feedback loops within the Drosophila circadian oscillator.
    Glossop NR; Lyons LC; Hardin PE
    Science; 1999 Oct; 286(5440):766-8. PubMed ID: 10531060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock.
    Ruoff P; Christensen MK; Sharma VK
    J Theor Biol; 2005 Nov; 237(1):41-57. PubMed ID: 15935389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light.
    Yoshii T; Fujii K; Tomioka K
    J Biol Rhythms; 2007 Apr; 22(2):103-14. PubMed ID: 17440212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrainment of the Drosophila circadian clock: more heat than light.
    Fan JY; Muskus MJ; Price JL
    Sci STKE; 2007 Nov; 2007(413):pe65. PubMed ID: 18029913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex.
    Bae K; Lee C; Hardin PE; Edery I
    J Neurosci; 2000 Mar; 20(5):1746-53. PubMed ID: 10684876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two distinct modes of PERIOD recruitment onto dCLOCK reveal a novel role for TIMELESS in circadian transcription.
    Sun WC; Jeong EH; Jeong HJ; Ko HW; Edery I; Kim EY
    J Neurosci; 2010 Oct; 30(43):14458-69. PubMed ID: 20980603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.
    Rensing L; Ruoff P
    Chronobiol Int; 2002 Sep; 19(5):807-64. PubMed ID: 12405549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster.
    Yoshii T; Sakamoto M; Tomioka K
    Zoolog Sci; 2002 Aug; 19(8):841-50. PubMed ID: 12193800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-Object, a stochastic simulator for post-transcriptional regulation.
    Ohki N; Hagiwara M
    Bioinformatics; 2005 May; 21(10):2478-87. PubMed ID: 15705653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm.
    Ueda HR; Hagiwara M; Kitano H
    J Theor Biol; 2001 Jun; 210(4):401-6. PubMed ID: 11403560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity.
    Kim EY; Bae K; Ng FS; Glossop NR; Hardin PE; Edery I
    Neuron; 2002 Mar; 34(1):69-81. PubMed ID: 11931742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a generalized simulator for multi-cellular organisms and its application to SMAD signal transduction.
    Kyoda KM; Muraki M; Kitano H
    Pac Symp Biocomput; 2000; ():317-28. PubMed ID: 10902180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pacemaker-neuron-dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation.
    Lee E; Cho E; Kang DH; Jeong EH; Chen Z; Yoo SH; Kim EY
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):E4904-13. PubMed ID: 27489346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock.
    Suri V; Lanjuin A; Rosbash M
    EMBO J; 1999 Feb; 18(3):675-86. PubMed ID: 9927427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional role of CREB-binding protein in the circadian clock system of Drosophila melanogaster.
    Lim C; Lee J; Choi C; Kim J; Doh E; Choe J
    Mol Cell Biol; 2007 Jul; 27(13):4876-90. PubMed ID: 17452464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of circadian rhythms in Drosophila incorporating the interlocked PER/TIM and VRI/PDP1 feedback loops.
    Xie Z; Kulasiri D
    J Theor Biol; 2007 Mar; 245(2):290-304. PubMed ID: 17157878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic models for circadian rhythms: effect of molecular noise on periodic and chaotic behaviour.
    Gonze D; Halloy J; Leloup JC; Goldbeter A
    C R Biol; 2003 Feb; 326(2):189-203. PubMed ID: 12754937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the molecular regulatory mechanism of circadian rhythms in Drosophila.
    Leloup JC; Goldbeter A
    Bioessays; 2000 Jan; 22(1):84-93. PubMed ID: 10649294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.