These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 23346344)
1. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. Schaffer RJ; Ireland HS; Ross JJ; Ling TJ; David KM AoB Plants; 2013; 5():pls047. PubMed ID: 23346344 [TBL] [Abstract][Full Text] [Related]
2. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Ireland HS; Yao JL; Tomes S; Sutherland PW; Nieuwenhuizen N; Gunaseelan K; Winz RA; David KM; Schaffer RJ Plant J; 2013 Mar; 73(6):1044-56. PubMed ID: 23236986 [TBL] [Abstract][Full Text] [Related]
3. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. Devoghalaere F; Doucen T; Guitton B; Keeling J; Payne W; Ling TJ; Ross JJ; Hallett IC; Gunaseelan K; Dayatilake GA; Diak R; Breen KC; Tustin DS; Costes E; Chagné D; Schaffer RJ; David KM BMC Plant Biol; 2012 Jan; 12():7. PubMed ID: 22243694 [TBL] [Abstract][Full Text] [Related]
4. Light, Ethylene and Auxin Signaling Interaction Regulates Carotenoid Biosynthesis During Tomato Fruit Ripening. Cruz AB; Bianchetti RE; Alves FRR; Purgatto E; Peres LEP; Rossi M; Freschi L Front Plant Sci; 2018; 9():1370. PubMed ID: 30279694 [TBL] [Abstract][Full Text] [Related]
5. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. Böttcher C; Keyzers RA; Boss PK; Davies C J Exp Bot; 2010 Aug; 61(13):3615-25. PubMed ID: 20581124 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide analysis and characterization of Aux/IAA family genes related to fruit ripening in papaya (Carica papaya L.). Liu K; Yuan C; Feng S; Zhong S; Li H; Zhong J; Shen C; Liu J BMC Genomics; 2017 May; 18(1):351. PubMed ID: 28476147 [TBL] [Abstract][Full Text] [Related]
7. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin. Busatto N; Tadiello A; Trainotti L; Costa F Plant Signal Behav; 2017 Jan; 12(1):e1268312. PubMed ID: 27935411 [TBL] [Abstract][Full Text] [Related]
8. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. Yue P; Lu Q; Liu Z; Lv T; Li X; Bu H; Liu W; Xu Y; Yuan H; Wang A New Phytol; 2020 Jun; 226(6):1781-1795. PubMed ID: 32083754 [TBL] [Abstract][Full Text] [Related]
9. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Trainotti L; Tadiello A; Casadoro G J Exp Bot; 2007; 58(12):3299-308. PubMed ID: 17925301 [TBL] [Abstract][Full Text] [Related]
10. Auxin Response Factor 2A Is Part of the Regulatory Network Mediating Fruit Ripening Through Auxin-Ethylene Crosstalk in Durian. Khaksar G; Sirikantaramas S Front Plant Sci; 2020; 11():543747. PubMed ID: 33013965 [TBL] [Abstract][Full Text] [Related]
11. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis. Pesis E; Ibáñez AM; Phu ML; Mitcham EJ; Ebeler SE; Dandekar AM J Agric Food Chem; 2009 Apr; 57(7):2786-92. PubMed ID: 19253953 [TBL] [Abstract][Full Text] [Related]
12. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.). Tadiello A; Longhi S; Moretto M; Ferrarini A; Tononi P; Farneti B; Busatto N; Vrhovsek U; Molin AD; Avanzato C; Biasioli F; Cappellin L; Scholz M; Velasco R; Trainotti L; Delledonne M; Costa F Plant J; 2016 Dec; 88(6):963-975. PubMed ID: 27531564 [TBL] [Abstract][Full Text] [Related]
13. On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. Tadiello A; Ziosi V; Negri AS; Noferini M; Fiori G; Busatto N; Espen L; Costa G; Trainotti L BMC Plant Biol; 2016 Feb; 16():44. PubMed ID: 26863869 [TBL] [Abstract][Full Text] [Related]
14. Ethylene and auxin biosynthesis and signaling are impaired by methyl jasmonate leading to a transient slowing down of ripening in peach fruit. Soto A; Ruiz KB; Ziosi V; Costa G; Torrigiani P J Plant Physiol; 2012 Dec; 169(18):1858-65. PubMed ID: 22884412 [TBL] [Abstract][Full Text] [Related]
15. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Böttcher C; Boss PK; Davies C J Exp Bot; 2011 Aug; 62(12):4267-80. PubMed ID: 21543520 [TBL] [Abstract][Full Text] [Related]
16. ABA may promote or delay peach fruit ripening through modulation of ripening- and hormone-related gene expression depending on the developmental stage. Soto A; Ruiz KB; Ravaglia D; Costa G; Torrigiani P Plant Physiol Biochem; 2013 Mar; 64():11-24. PubMed ID: 23337357 [TBL] [Abstract][Full Text] [Related]
17. Ethylene and Auxin: Hormonal Regulation of Volatile Compound Production During Tomato ( Tobaruela EC; Gomes BL; Bonato VCB; de Lima ES; Freschi L; Purgatto E Front Plant Sci; 2021; 12():765897. PubMed ID: 34956263 [TBL] [Abstract][Full Text] [Related]
18. Diverse Functions of IAA-Leucine Resistant PpILR1 Provide a Genic Basis for Auxin-Ethylene Crosstalk During Peach Fruit Ripening. Wang X; Meng J; Deng L; Wang Y; Liu H; Yao JL; Nieuwenhuizen NJ; Wang Z; Zeng W Front Plant Sci; 2021; 12():655758. PubMed ID: 34054901 [TBL] [Abstract][Full Text] [Related]
19. Bioinformatics Study of Iqbal S; Hayat F; Mushtaq N; Khalil-Ur-Rehman M; Khan U; Yasoob TB; Khan MN; Ni Z; Ting S; Gao Z Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35893602 [TBL] [Abstract][Full Text] [Related]
20. The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Tacken E; Ireland H; Gunaseelan K; Karunairetnam S; Wang D; Schultz K; Bowen J; Atkinson RG; Johnston JW; Putterill J; Hellens RP; Schaffer RJ Plant Physiol; 2010 May; 153(1):294-305. PubMed ID: 20237022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]