These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23346368)

  • 1. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.
    Kim S; Lee D; Liu X; Van Neste C; Jeon S; Thundat T
    Sci Rep; 2013; 3():1111. PubMed ID: 23346368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic spectra and modes of vibration of TNT and RDX at CO2 laser wavelengths.
    Prasad RL; Prasad R; Bhar GC; Thakur SN
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Dec; 58(14):3093-102. PubMed ID: 12511093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standoff Mechanical Resonance Spectroscopy Based on Infrared-Sensitive Hydrogel Microcantilevers.
    Chae I; Khan MF; Song J; Kang T; Lee J; Thundat T
    Anal Chem; 2016 Oct; 88(19):9678-9684. PubMed ID: 27599117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standoff Photoacoustic Spectroscopy of Explosives.
    Marcus LS; Holthoff EL; Pellegrino PM
    Appl Spectrosc; 2017 May; 71(5):833-838. PubMed ID: 27340220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speciation of energetic materials on a microcantilever using surface reduction.
    Yi D; Senesac L; Thundat T
    Scanning; 2008; 30(2):208-12. PubMed ID: 18288710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
    Habib A; Bi L; Wen L
    Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitivity detection of TNT.
    Pushkarsky MB; Dunayevskiy IG; Prasanna M; Tsekoun AG; Go R; Patel CK
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19630-4. PubMed ID: 17164325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array.
    Lee D; Kim S; Van Neste CW; Lee M; Jeon S; Thundat T
    Nanotechnology; 2014 Jan; 25(3):035501. PubMed ID: 24346340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.
    Hikal WM; Weeks BL
    Talanta; 2014 Jul; 125():24-8. PubMed ID: 24840410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV-FIA: UV-induced fluoro-immunochemical assay for ultra-trace detection of PETN, RDX, and TNT.
    Chaudhary S; Sonkusre P; Chopra A; Bhasin KK; Suri CR
    Anal Chim Acta; 2019 Oct; 1077():266-272. PubMed ID: 31307718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry.
    Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X
    Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace detection of some nitro-explosives using thermal mediated immunochemical defragmented method.
    Chaudhary S; Sonkusre P; Bhasin KK; Sabherwal P; Suri CR
    Biosens Bioelectron; 2019 Feb; 126():590-595. PubMed ID: 30500774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor.
    Paul M; Tscheuschner G; Herrmann S; Weller MG
    Biosensors (Basel); 2020 Aug; 10(8):. PubMed ID: 32764236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the concentration of explosives in air by isotope dilution analysis.
    St John GA; McReynolds JH; Blucher WG; Scott AC; Anbar M
    Forensic Sci; 1975; 6(1-2):53-66. PubMed ID: 814074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.
    Oztekin EK; Burton DJ; Hahn DW
    Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of solid-phase microextraction to the recovery of organic explosives.
    Kirkbride KP; Klass G; Pigou PE
    J Forensic Sci; 1998 Jan; 43(1):76-81. PubMed ID: 9456529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry.
    Khayamian T; Tabrizchi M; Jafari MT
    Talanta; 2003 Feb; 59(2):327-33. PubMed ID: 18968915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes.
    Cetó X; O' Mahony AM; Wang J; Del Valle M
    Talanta; 2013 Mar; 107():270-6. PubMed ID: 23598222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.