BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2334683)

  • 1. Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein.
    Pjura PE; Matsumura M; Wozniak JA; Matthews BW
    Biochemistry; 1990 Mar; 29(10):2592-8. PubMed ID: 2334683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a stabilizing disulfide bridge mutant that closes the active-site cleft of T4 lysozyme.
    Jacobson RH; Matsumura M; Faber HR; Matthews BW
    Protein Sci; 1992 Jan; 1(1):46-57. PubMed ID: 1304882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of phage T4 lysozyme by engineered disulfide bonds.
    Matsumura M; Becktel WJ; Levitt M; Matthews BW
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6562-6. PubMed ID: 2671995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme.
    Nicholson H; Anderson DE; Dao-pin S; Matthews BW
    Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of an engineered disulfide bond on the folding of T4 lysozyme at low temperatures.
    Anderson WD; Fink AL; Perry LJ; Wetzel R
    Biochemistry; 1990 Apr; 29(13):3331-7. PubMed ID: 2334694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bonds and thermal stability in T4 lysozyme.
    Wetzel R; Perry LJ; Baase WA; Becktel WJ
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):401-5. PubMed ID: 3277175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme.
    Perry LJ; Wetzel R
    Biochemistry; 1986 Feb; 25(3):733-9. PubMed ID: 3513834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization.
    Matsumura M; Wozniak JA; Sun DP; Matthews BW
    J Biol Chem; 1989 Sep; 264(27):16059-66. PubMed ID: 2674124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a simplification of the protein folding problem: a stabilizing polyalanine alpha-helix engineered in T4 lysozyme.
    Zhang XJ; Baase WA; Matthews BW
    Biochemistry; 1991 Feb; 30(8):2012-7. PubMed ID: 1998663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid crystallization of T4 lysozyme by intermolecular disulfide cross-linking.
    Heinz DW; Matthews BW
    Protein Eng; 1994 Mar; 7(3):301-7. PubMed ID: 8177878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein.
    Hinck AP; Truckses DM; Markley JL
    Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis.
    Sun DP; Sauer U; Nicholson H; Matthews BW
    Biochemistry; 1991 Jul; 30(29):7142-53. PubMed ID: 1854726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacements of Pro86 in phage T4 lysozyme extend an alpha-helix but do not alter protein stability.
    Alber T; Bell JA; Sun DP; Nicholson H; Wozniak JA; Cook S; Matthews BW
    Science; 1988 Feb; 239(4840):631-5. PubMed ID: 3277275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the crystal structure of bacteriophage T4 lysozyme at low, medium, and high ionic strengths.
    Bell JA; Wilson KP; Zhang XJ; Faber HR; Nicholson H; Matthews BW
    Proteins; 1991; 10(1):10-21. PubMed ID: 2062826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of proline residues in human lysozyme stability: a scanning calorimetric study combined with X-ray structure analysis of proline mutants.
    Herning T; Yutani K; Inaka K; Kuroki R; Matsushima M; Kikuchi M
    Biochemistry; 1992 Aug; 31(31):7077-85. PubMed ID: 1643041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mutant T4 lysozyme (Val 131----Ala) designed to increase thermostability by the reduction of strain within an alpha-helix.
    Dao-Pin S; Baase WA; Matthews BW
    Proteins; 1990; 7(2):198-204. PubMed ID: 2326253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution structure of the temperature-sensitive mutant of phage lysozyme, Arg 96----His.
    Weaver LH; Gray TM; Grütter MG; Anderson DE; Wozniak JA; Dahlquist FW; Matthews BW
    Biochemistry; 1989 May; 28(9):3793-7. PubMed ID: 2665808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of enzyme activity by an engineered disulfide bond.
    Matsumura M; Matthews BW
    Science; 1989 Feb; 243(4892):792-4. PubMed ID: 2916125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability.
    Dao-pin S; Söderlind E; Baase WA; Wozniak JA; Sauer U; Matthews BW
    J Mol Biol; 1991 Oct; 221(3):873-87. PubMed ID: 1942034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutant T4 lysozyme displays five different crystal conformations.
    Faber HR; Matthews BW
    Nature; 1990 Nov; 348(6298):263-6. PubMed ID: 2234094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.