These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2334730)

  • 1. Attraction, deformation and contact of membranes induced by low frequency electric fields.
    Dimitrov DS; Apostolova MA; Sowers AE
    Biochim Biophys Acta; 1990 Apr; 1023(3):389-97. PubMed ID: 2334730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A delay in membrane fusion: lag times observed by fluorescence microscopy of individual fusion events induced by an electric field pulse.
    Dimitrov DS; Sowers AE
    Biochemistry; 1990 Sep; 29(36):8337-44. PubMed ID: 2174698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses.
    Sowers AE
    J Cell Biol; 1986 Apr; 102(4):1358-62. PubMed ID: 3958050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion events and nonfusion contents mixing events induced in erythrocyte ghosts by an electric pulse.
    Sowers AE
    Biophys J; 1988 Oct; 54(4):619-26. PubMed ID: 3224147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media.
    Sukhorukov VL; Mussauer H; Zimmermann U
    J Membr Biol; 1998 Jun; 163(3):235-45. PubMed ID: 9625780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of electric field-induced fusion in erythrocyte ghost membranes.
    Sowers AE
    J Cell Biol; 1984 Dec; 99(6):1989-96. PubMed ID: 6438112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The long-lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile.
    Sowers AE
    Biophys J; 1987 Dec; 52(6):1015-20. PubMed ID: 3427195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane skeleton restraint of surface shape change during fusion of erythrocyte membranes: evidence from use of osmotic and dielectrophoretic microforces as probes.
    Sowers AE
    Biophys J; 1995 Dec; 69(6):2507-16. PubMed ID: 8599657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane fusion and deformation of red blood cells by electric fields.
    Scheurich P; Zimmermann U; Mischel M; Lamprecht I
    Z Naturforsch C Biosci; 1980; 35(11-12):1081-5. PubMed ID: 7210806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols.
    Wu Y; Montes JG; Sjodin RA
    Biophys J; 1992 Mar; 61(3):810-5. PubMed ID: 1504251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-membrane interactions: parallel membranes or patterned discrete contacts.
    Darmani H; Coakley WT
    Biochim Biophys Acta; 1990 Jan; 1021(2):182-90. PubMed ID: 1689180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoretic forces and potentials induced on pairs of cells in an electric field.
    Foster KR; Sowers AE
    Biophys J; 1995 Sep; 69(3):777-84. PubMed ID: 8519978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-field-induced fusion of enzyme-treated human red cells: kinetics of intermembrane protein exchange.
    Donath E; Arndt R
    Gen Physiol Biophys; 1984 Jun; 3(3):239-49. PubMed ID: 6479580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic strength dependence of localized contact formation between membranes: nonlinear theory and experiment.
    Coakley WT; Gallez D; de Souza ER; Gauci H
    Biophys J; 1999 Aug; 77(2):817-28. PubMed ID: 10423428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas.
    Evans E; Berk D; Leung A; Mohandas N
    Biophys J; 1991 Apr; 59(4):849-60. PubMed ID: 2065189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human erythrocyte electrofusion kinetics monitored by aqueous contents mixing.
    Stenger DA; Hui SW
    Biophys J; 1988 May; 53(5):833-8. PubMed ID: 3390523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipole interactions in electrofusion. Contributions of membrane potential and effective dipole interaction pressures.
    Stenger DA; Kaler KV; Hui SW
    Biophys J; 1991 May; 59(5):1074-84. PubMed ID: 1868154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized contact formation by erythrocyte membranes: electrostatic effects.
    Thomas NE; Coakley WT
    Biophys J; 1995 Oct; 69(4):1387-401. PubMed ID: 8534809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.