These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23347552)

  • 1. Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device.
    Sano N; Tomita W; Hara S; Min CM; Lee JS; Oyaizu K; Nishide H
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1355-61. PubMed ID: 23347552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.
    Choi W; Harada D; Oyaizu K; Nishide H
    J Am Chem Soc; 2011 Dec; 133(49):19839-43. PubMed ID: 22011047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte.
    Liu Z; Tay SW; Li X
    Chem Commun (Camb); 2011 Dec; 47(46):12473-5. PubMed ID: 22022706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte.
    Koshika K; Sano N; Oyaizu K; Nishide H
    Chem Commun (Camb); 2009 Feb; (7):836-8. PubMed ID: 19322458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery.
    Janoschka T; Friebe C; Hager MD; Martin N; Schubert US
    ChemistryOpen; 2017 Apr; 6(2):216-220. PubMed ID: 28413754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers.
    Huang Q; Choi D; Cosimbescu L; Lemmon JP
    Phys Chem Chem Phys; 2013 Dec; 15(48):20921-8. PubMed ID: 24202318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Donor-Acceptor Conjugated Microporous Polymers as Ultralong-Lived Organic Anodes for Rechargeable Air Batteries.
    Zhong L; Fang Z; Shu C; Mo C; Chen X; Yu D
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):10164-10171. PubMed ID: 33580887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.
    Zhu LM; Lei AW; Cao YL; Ai XP; Yang HX
    Chem Commun (Camb); 2013 Jan; 49(6):567-9. PubMed ID: 23212556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressing H
    Fan X; Gao X; Zhang X; Cui G; Lu H; Xu Z; Yang J
    RSC Adv; 2020 Jan; 10(2):620-625. PubMed ID: 35494440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A four-electron O(2)-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V.
    Soukharev V; Mano N; Heller A
    J Am Chem Soc; 2004 Jul; 126(27):8368-9. PubMed ID: 15237980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2.
    Wang X; Qu Q; Hou Y; Wang F; Wu Y
    Chem Commun (Camb); 2013 Jul; 49(55):6179-81. PubMed ID: 23732678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(dihydroxybenzoquinone): its high-density and robust charge storage capability in rechargeable acidic polymer-air batteries.
    Oka K; Furukawa S; Murao S; Oka T; Nishide H; Oyaizu K
    Chem Commun (Camb); 2020 Apr; 56(29):4055-4058. PubMed ID: 32211741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rechargeable batteries driven by redox reactions of Mn12 clusters with structural changes: XAFS analyses of the charging/discharging processes in molecular cluster batteries.
    Yoshikawa H; Hamanaka S; Miyoshi Y; Kondo Y; Shigematsu S; Akutagawa N; Sato M; Yokoyama T; Awaga K
    Inorg Chem; 2009 Oct; 48(19):9057-9. PubMed ID: 19746899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive electroconductive hydrogels: the effects of electropolymerization charge density on the storage stability of an enzyme-based biosensor.
    Kotanen CN; Tlili C; Guiseppi-Elie A
    Appl Biochem Biotechnol; 2012 Feb; 166(4):878-88. PubMed ID: 22212391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and chemical protection of a wired enzyme oxygen cathode by a cubic phase lyotropic liquid crystal.
    Rowinski P; Kang C; Shin H; Heller A
    Anal Chem; 2007 Feb; 79(3):1173-80. PubMed ID: 17263351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2006 Mar; 6(3):353-61. PubMed ID: 16511617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A laccase-wiring redox hydrogel for efficient catalysis of O2 electroreduction.
    Mano N; Soukharev V; Heller A
    J Phys Chem B; 2006 Jun; 110(23):11180-7. PubMed ID: 16771381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.