These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23347552)

  • 21. Rechargeable molecular cluster batteries.
    Yoshikawa H; Kazama C; Awaga K; Satoh M; Wada J
    Chem Commun (Camb); 2007 Aug; (30):3169-70. PubMed ID: 17653377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-situ XAFS studies of Mn12 molecular-cluster batteries: super-reduced Mn12 clusters in solid-state electrochemistry.
    Wang H; Hamanaka S; Yokoyama T; Yoshikawa H; Awaga K
    Chem Asian J; 2011 Apr; 6(4):1074-9. PubMed ID: 21265025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of electrolyte and pH on the behavior of cross-linked films of ferrocene-modified poly(ethylenimine).
    Merchant SA; Glatzhofer DT; Schmidtke DW
    Langmuir; 2007 Oct; 23(22):11295-302. PubMed ID: 17902716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution-processed flexible polymer solar cells with silver nanowire electrodes.
    Yang L; Zhang T; Zhou H; Price SC; Wiley BJ; You W
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4075-84. PubMed ID: 21899278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonaqueous magnesium electrochemistry and its application in secondary batteries.
    Aurbach D; Weissman I; Gofer Y; Levi E
    Chem Rec; 2003; 3(1):61-73. PubMed ID: 12552532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible organic light-emitting diodes with a polymeric nanocomposite anode.
    Wang GF; Tao XM; Wang RX
    Nanotechnology; 2008 Apr; 19(14):145201. PubMed ID: 21817753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffusion-free mediator based miniature biofuel cell anode fabricated on a carbon-MEMS electrode.
    Bisht GS; Holmberg S; Kulinsky L; Madou M
    Langmuir; 2012 Oct; 28(39):14055-64. PubMed ID: 22946444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micro-biofuel cell powered by glucose/O2 based on electro-deposition of enzyme, conducting polymer and redox mediators: preparation, characterization and performance in human serum.
    Ammam M; Fransaer J
    Biosens Bioelectron; 2010 Feb; 25(6):1474-80. PubMed ID: 20005695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic conduction in Zn3(PO4)2.4H2O enables efficient discharge of the zinc anode in serum.
    Shin W; Lee J; Kim Y; Steinfink H; Heller A
    J Am Chem Soc; 2005 Oct; 127(42):14590-1. PubMed ID: 16231909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries.
    Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A high energy-density tin anode for rechargeable magnesium-ion batteries.
    Singh N; Arthur TS; Ling C; Matsui M; Mizuno F
    Chem Commun (Camb); 2013 Jan; 49(2):149-51. PubMed ID: 23168386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical quartz crystal impedance study of redox hydrogel mediators for amperometric enzyme electrodes.
    Etchenique RA; Calvo EJ
    Anal Chem; 1997 Dec; 69(23):4833-41. PubMed ID: 21639155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.
    Su C; Shao Z; Lin Y; Wu Y; Wang H
    Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material.
    Seki S; Kobayashi Y; Miyashiro H; Ohno Y; Usami A; Mita Y; Watanabe M; Terada N
    Chem Commun (Camb); 2006 Feb; (5):544-5. PubMed ID: 16432577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries.
    DiLeo RA; Castiglia A; Ganter MJ; Rogers RE; Cress CD; Raffaelle RP; Landi BJ
    ACS Nano; 2010 Oct; 4(10):6121-31. PubMed ID: 20857949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid-state electropolymerization and doping of triphenylamine as a route for electroactive thin films.
    Lana-Villarreal T; Campiña JM; Guijarro N; Gómez R
    Phys Chem Chem Phys; 2011 Mar; 13(9):4013-21. PubMed ID: 21225029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor.
    Liu R; Cho SI; Lee SB
    Nanotechnology; 2008 May; 19(21):215710. PubMed ID: 21730589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
    Cui LF; Hu L; Choi JW; Cui Y
    ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.