These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 23347552)
41. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. Panzer MJ; Frisbie CD J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381 [TBL] [Abstract][Full Text] [Related]
42. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. Gao H; Xiao F; Ching CB; Duan H ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683 [TBL] [Abstract][Full Text] [Related]
43. Unlocking high-potential non-persistent radical chemistry for semi-aqueous redox batteries. Tian Y; Wu KH; Cao L; Saputera WH; Amal R; Wang DW Chem Commun (Camb); 2019 Feb; 55(15):2154-2157. PubMed ID: 30714596 [TBL] [Abstract][Full Text] [Related]
44. Molecular wiring of insulators: charging and discharging electrode materials for high-energy lithium-ion batteries by molecular charge transport layers. Wang Q; Evans N; Zakeeruddin SM; Exnar I; Grätzel M J Am Chem Soc; 2007 Mar; 129(11):3163-7. PubMed ID: 17326635 [TBL] [Abstract][Full Text] [Related]
45. A potentially insect-implantable trehalose electrooxidizing anode. Pothukuchy A; Mano N; Georgiou G; Heller A Biosens Bioelectron; 2006 Dec; 22(5):678-84. PubMed ID: 16546370 [TBL] [Abstract][Full Text] [Related]
46. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
47. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. Liu J; Xia H; Xue D; Lu L J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911 [TBL] [Abstract][Full Text] [Related]
48. Negative faradaic resistance in extracellular electron transfer by anode-respiring Geobacter sulfurreducens cells. Matsuda S; Liu H; Kato S; Hashimoto K; Nakanishi S Environ Sci Technol; 2011 Dec; 45(23):10163-9. PubMed ID: 22047596 [TBL] [Abstract][Full Text] [Related]
49. Dioxythiophene-based polymer electrodes for supercapacitor modules. Liu DY; Reynolds JR ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685 [TBL] [Abstract][Full Text] [Related]
50. Prototype systems for rechargeable magnesium batteries. Aurbach D; Lu Z; Schechter A; Gofer Y; Gizbar H; Turgeman R; Cohen Y; Moshkovich M; Levi E Nature; 2000 Oct; 407(6805):724-7. PubMed ID: 11048714 [TBL] [Abstract][Full Text] [Related]
51. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567 [TBL] [Abstract][Full Text] [Related]
52. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Fabre B Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977 [TBL] [Abstract][Full Text] [Related]
53. Electrochemical generation of gradients in surfactant concentration across microfluidic channels. Liu X; Abbott NL Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794 [TBL] [Abstract][Full Text] [Related]
54. Covalently bound hole-injecting nanostructures. Systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency. Huang Q; Evmenenko GA; Dutta P; Lee P; Armstrong NR; Marks TJ J Am Chem Soc; 2005 Jul; 127(29):10227-42. PubMed ID: 16028934 [TBL] [Abstract][Full Text] [Related]
55. In situ observation of the electrochemical lithiation of a single SnO₂ nanowire electrode. Huang JY; Zhong L; Wang CM; Sullivan JP; Xu W; Zhang LQ; Mao SX; Hudak NS; Liu XH; Subramanian A; Fan H; Qi L; Kushima A; Li J Science; 2010 Dec; 330(6010):1515-20. PubMed ID: 21148385 [TBL] [Abstract][Full Text] [Related]
56. High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte. Inoishi A; Ida S; Uratani S; Okano T; Ishihara T Phys Chem Chem Phys; 2012 Oct; 14(37):12818-22. PubMed ID: 22880205 [TBL] [Abstract][Full Text] [Related]
57. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Wu Q; Sun Y; Bai H; Shi G Phys Chem Chem Phys; 2011 Jun; 13(23):11193-8. PubMed ID: 21562653 [TBL] [Abstract][Full Text] [Related]
58. High-contrast solid-state electrochromic devices of viologen-bridged polysilsesquioxane nanoparticles fabricated by layer-by-layer assembly. Jain V; Khiterer M; Montazami R; Yochum HM; Shea KJ; Heflin JR ACS Appl Mater Interfaces; 2009 Jan; 1(1):83-9. PubMed ID: 20355758 [TBL] [Abstract][Full Text] [Related]
59. A novel rechargeable Li-AgO battery with hybrid electrolytes. Li H; Wang Y; He P; Zhou H Chem Commun (Camb); 2010 Mar; 46(12):2055-7. PubMed ID: 20221490 [TBL] [Abstract][Full Text] [Related]
60. Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels. Mao F; Mano N; Heller A J Am Chem Soc; 2003 Apr; 125(16):4951-7. PubMed ID: 12696915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]