These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23347618)

  • 41. The combined extraction of sage (Salvia officinalis L.): ultrasound followed by supercritical CO2 extraction.
    Glisic SB; Ristic M; Skala DU
    Ultrason Sonochem; 2011 Jan; 18(1):318-26. PubMed ID: 20634117
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.
    Sapkota B; Cioppa MT
    Environ Pollut; 2012 Nov; 170():131-44. PubMed ID: 22789520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchment in Scotland.
    Bacon JR; Hewitt IJ; Cooper P
    Sci Total Environ; 2005 Jan; 337(1-3):191-205. PubMed ID: 15626390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metal mobilization in soil by two structurally defined polyphenols.
    Schmidt MA; Gonzalez JM; Halvorson JJ; Hagerman AE
    Chemosphere; 2013 Feb; 90(6):1870-7. PubMed ID: 23149187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2.
    Cheng CH; Du TB; Pi HC; Jang SM; Lin YH; Lee HT
    Bioresour Technol; 2011 Nov; 102(21):10151-3. PubMed ID: 21917450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of grinding and shaking on Cd, Pb and Zn distribution in anthropogenically impacted soils.
    Waterlot C; Bidar G; Pruvot C; Douay F
    Talanta; 2012 Aug; 98():185-96. PubMed ID: 22939146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling of supercritical fluid extraction of phenanthrene from clayey soil.
    Elektorowicz M; El-Sadi H; Ayadat T
    J Sep Sci; 2008 May; 31(8):1381-6. PubMed ID: 18366027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supercritical-fluid extraction as a method for investigating the fate of the organic contaminants in soil.
    Setti L; Morselli L
    Ann Chim; 2001; 91(7-8):503-15. PubMed ID: 11554188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Destruction of pentachlorobiphenyl in soil by supercritical CO(2) extraction coupled with polymer-stabilized palladium nanoparticles.
    Wang JS; Chiu K
    Chemosphere; 2009 May; 75(5):629-633. PubMed ID: 19211124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a simple extraction cell with bi-directional continuous flow coupled on-line to ICP-MS for assessment of elemental associations in solid samples.
    Buanuam J; Tiptanasup K; Shiowatana J; MirĂ³ M; Harald Hansen E
    J Environ Monit; 2006 Dec; 8(12):1248-54. PubMed ID: 17133282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supercritical fluid extraction and separation of uranium from other actinides.
    Quach DL; Mincher BJ; Wai CM
    J Hazard Mater; 2014 Jun; 274():360-6. PubMed ID: 24801893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Remediation of
    Leybros A; Segond N; Grandjean A
    Chemosphere; 2018 Oct; 208():838-845. PubMed ID: 30068026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimation of lead bioavailability in smelter-contaminated soils by single and sequential extraction procedure.
    Chen S; Sun L; Chao L; Zhou Q; Sun T
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):43-7. PubMed ID: 18854907
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].
    Chen FF; Wu Y; Ge FH
    Zhong Yao Cai; 2012 Mar; 35(3):479-82. PubMed ID: 22876691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Preparation of nanostructured lipid carriers loaded with supercritical carbon dioxide fluid extraction of Xionggui powder].
    Chen Y; Chen F; Wei W; Zhang X; Feng Q; Jin R
    Zhongguo Zhong Yao Za Zhi; 2009 Jan; 34(2):148-51. PubMed ID: 19385172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil.
    Bhattacharyya P; Tripathy S; Chakrabarti K; Chakraborty A; Banik P
    Chemosphere; 2008 Jun; 72(4):543-50. PubMed ID: 18471858
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Extraction of lobetyolin from codonopsis with supercritical CO2].
    Liu T; Li S; Min J; Bao X
    Zhongguo Zhong Yao Za Zhi; 2009 Mar; 34(5):560-3. PubMed ID: 19526782
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques.
    Papassiopi N; Kontoyianni A; Vaxevanidou K; Xenidis A
    Sci Total Environ; 2009 Jan; 407(2):925-36. PubMed ID: 18945478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Change of the chemical composition and biodegradability of the Van Soest soluble fraction during composting: a study using a novel extraction method.
    Peltre C; Dignac MF; Derenne S; Houot S
    Waste Manag; 2010 Dec; 30(12):2448-60. PubMed ID: 20667705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of water on the supercritical fluid extraction of naphthalene from soil.
    Smyth TJ; Zytner RG; Stiver WH
    J Hazard Mater; 1999 Jun; 67(2):183-96. PubMed ID: 10341301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.