BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23347835)

  • 1. Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimide-conjugated PEG-lipid with multifunctional crosslinkers.
    Teramura Y; Oommen OP; Olerud J; Hilborn J; Nilsson B
    Biomaterials; 2013 Apr; 34(11):2683-93. PubMed ID: 23347835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane.
    Teramura Y; Kaneda Y; Iwata H
    Biomaterials; 2007 Nov; 28(32):4818-25. PubMed ID: 17698188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane.
    Miura S; Teramura Y; Iwata H
    Biomaterials; 2006 Dec; 27(34):5828-35. PubMed ID: 16919725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid.
    Chen H; Teramura Y; Iwata H
    J Control Release; 2011 Mar; 150(2):229-34. PubMed ID: 21108976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of islets with PEG-lipid for improvement of graft survival in intraportal transplantation.
    Teramura Y; Iwata H
    Transplantation; 2009 Sep; 88(5):624-30. PubMed ID: 19741458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microencapsulation of islets with living cells using polyDNA-PEG-lipid conjugate.
    Teramura Y; Minh LN; Kawamoto T; Iwata H
    Bioconjug Chem; 2010 Apr; 21(4):792-6. PubMed ID: 20210336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Islet encapsulation with living cells for improvement of biocompatibility.
    Teramura Y; Iwata H
    Biomaterials; 2009 Apr; 30(12):2270-5. PubMed ID: 19201021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of soluble complement receptor 1 on islets.
    Luan NM; Teramura Y; Iwata H
    Biomaterials; 2011 Jul; 32(20):4539-45. PubMed ID: 21459435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol.
    Haque MR; Kim J; Park H; Lee HS; Lee KW; Al-Hilal TA; Jeong JH; Ahn CH; Lee DS; Kim SJ; Byun Y
    J Control Release; 2017 Jul; 258():10-21. PubMed ID: 28433740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion.
    Kizilel S; Scavone A; Liu X; Nothias JM; Ostrega D; Witkowski P; Millis M
    Tissue Eng Part A; 2010 Jul; 16(7):2217-28. PubMed ID: 20163204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes.
    Cruise GM; Hegre OD; Lamberti FV; Hager SR; Hill R; Scharp DS; Hubbell JA
    Cell Transplant; 1999; 8(3):293-306. PubMed ID: 10442742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Islet Microencapsulation with Thin Polymer Membranes for Long-Term Stability.
    Toda S; Fattah A; Asawa K; Nakamura N; N Ekdahl K; Nilsson B; Teramura Y
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31698737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered VEGF-releasing PEG-MAL hydrogel for pancreatic islet vascularization.
    Phelps EA; Templeman KL; Thulé PM; García AJ
    Drug Deliv Transl Res; 2015 Apr; 5(2):125-36. PubMed ID: 25787738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation.
    Xie D; Smyth CA; Eckstein C; Bilbao G; Mays J; Eckhoff DE; Contreras JL
    Biomaterials; 2005 Feb; 26(4):403-12. PubMed ID: 15275814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Surface Engineering for Regulation of Immune Reactions in Cell Therapy.
    Teramura Y; Asif S; Ekdahl KN; Nilsson B
    Adv Exp Med Biol; 2015; 865():189-209. PubMed ID: 26306451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination strategy of multi-layered surface camouflage using hyperbranched polyethylene glycol and immunosuppressive drugs for the prevention of immune reactions against transplanted porcine islets.
    Haque MR; Jeong JH; Byun Y
    Biomaterials; 2016 Apr; 84():144-156. PubMed ID: 26828680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Islet surface modification with urokinase through DNA hybridization.
    Takemoto N; Teramura Y; Iwata H
    Bioconjug Chem; 2011 Apr; 22(4):673-8. PubMed ID: 21425812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.
    Weaver JD; Headen DM; Hunckler MD; Coronel MM; Stabler CL; García AJ
    Biomaterials; 2018 Jul; 172():54-65. PubMed ID: 29715595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of graft survival by surface modification with poly(ethylene glycol)-lipid and urokinase in intraportal islet transplantation.
    Teramura Y; Iwata H
    Transplantation; 2011 Feb; 91(3):271-8. PubMed ID: 21344734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Islets surface modification prevents blood-mediated inflammatory responses.
    Teramura Y; Iwata H
    Bioconjug Chem; 2008 Jul; 19(7):1389-95. PubMed ID: 18533707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.