These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 23347893)
1. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Chen CH; Lin CT; Hsu WL; Chang YC; Yeh SR; Li LJ; Yao DJ Nanomedicine; 2013 Jul; 9(5):600-4. PubMed ID: 23347893 [TBL] [Abstract][Full Text] [Related]
2. Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Yu F; Zhao Y; Gu J; Quigley KL; Chi NC; Tai YC; Hsiai TK Biomed Microdevices; 2012 Apr; 14(2):357-66. PubMed ID: 22124886 [TBL] [Abstract][Full Text] [Related]
3. Graphene microelectrode arrays for neural activity detection. Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492 [TBL] [Abstract][Full Text] [Related]
4. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Chen CH; Chuang SC; Su HC; Hsu WL; Yew TR; Chang YC; Yeh SR; Yao DJ Lab Chip; 2011 May; 11(9):1647-55. PubMed ID: 21448485 [TBL] [Abstract][Full Text] [Related]
5. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Viana D; Walston ST; Masvidal-Codina E; Illa X; Rodríguez-Meana B; Del Valle J; Hayward A; Dodd A; Loret T; Prats-Alfonso E; de la Oliva N; Palma M; Del Corro E; Del Pilar Bernicola M; Rodríguez-Lucas E; Gener T; de la Cruz JM; Torres-Miranda M; Duvan FT; Ria N; Sperling J; Martí-Sánchez S; Spadaro MC; Hébert C; Savage S; Arbiol J; Guimerà-Brunet A; Puig MV; Yvert B; Navarro X; Kostarelos K; Garrido JA Nat Nanotechnol; 2024 Apr; 19(4):514-523. PubMed ID: 38212522 [TBL] [Abstract][Full Text] [Related]
6. Determination of the Thermal Noise Limit of Graphene Biotransistors. Crosser MS; Brown MA; McEuen PL; Minot ED Nano Lett; 2015 Aug; 15(8):5404-7. PubMed ID: 26176844 [TBL] [Abstract][Full Text] [Related]
7. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording. Pan AI; Lin MH; Chung HW; Chen H; Yeh SR; Chuang YJ; Chang YC; Yew TR Analyst; 2016 Jan; 141(1):279-84. PubMed ID: 26588673 [TBL] [Abstract][Full Text] [Related]
8. A High-Performance Electrode Based on van der Waals Heterostructure for Neural Recording. Liu S; Liu L; Zhao Y; Wang Y; Wu Y; Zhang XD; Ming D Nano Lett; 2022 Jun; 22(11):4400-4409. PubMed ID: 35587781 [TBL] [Abstract][Full Text] [Related]
9. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation. Nimbalkar S; Samejima S; Dang V; Hunt T; Nunez O; Moritz C; Kassegne S J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34492644 [No Abstract] [Full Text] [Related]
10. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
11. Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes. Chen CH; Su HC; Chuang SC; Yen SJ; Chen YC; Lee YT; Chen H; Yew TR; Chang YC; Yeh SR; Yao DJ Nanotechnology; 2010 Dec; 21(48):485501. PubMed ID: 21051797 [TBL] [Abstract][Full Text] [Related]
12. An impedance matching algorithm for common-mode interference removal in vagus nerve recordings. Levy TJ; Ahmed U; Tsaava T; Chang YC; Lorraine PJ; Tomaio JN; Cracchiolo M; Lopez M; Rieth L; Tracey KJ; Zanos S; Zanos TP J Neurosci Methods; 2020 Jan; 330():108467. PubMed ID: 31654663 [TBL] [Abstract][Full Text] [Related]
13. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Kuzum D; Takano H; Shim E; Reed JC; Juul H; Richardson AG; de Vries J; Bink H; Dichter MA; Lucas TH; Coulter DA; Cubukcu E; Litt B Nat Commun; 2014 Oct; 5():5259. PubMed ID: 25327632 [TBL] [Abstract][Full Text] [Related]
14. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring. Lou C; Li R; Li Z; Liang T; Wei Z; Run M; Yan X; Liu X Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809270 [TBL] [Abstract][Full Text] [Related]
15. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650 [TBL] [Abstract][Full Text] [Related]
16. Towards a noise prediction model for in vivo neural recording. López CM; Welkenhuysen M; Musa S; Eberle W; Bartic C; Puers R; Gielen G Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():759-62. PubMed ID: 23366003 [TBL] [Abstract][Full Text] [Related]
17. Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Cao H; Yu F; Zhao Y; Zhang X; Tai J; Lee J; Darehzereshki A; Bersohn M; Lien CL; Chi NC; Tai YC; Hsiai TK Integr Biol (Camb); 2014 Aug; 6(8):789-95. PubMed ID: 24945366 [TBL] [Abstract][Full Text] [Related]
18. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. Guo B; Fan Y; Wang M; Cheng Y; Ji B; Chen Y; Wang G Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768957 [TBL] [Abstract][Full Text] [Related]
19. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording. Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479 [TBL] [Abstract][Full Text] [Related]
20. Novel glass microprobe arrays for neural recording. Lin CW; Lee YT; Chang CW; Hsu WL; Chang YC; Fang W Biosens Bioelectron; 2009 Oct; 25(2):475-81. PubMed ID: 19726175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]