These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 23347900)
1. On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model. Albano G; Giorno V; Román-Román P; Torres-Ruiz F Math Biosci; 2013 Sep; 245(1):12-21. PubMed ID: 23347900 [TBL] [Abstract][Full Text] [Related]
2. Estimating and determining the effect of a therapy on tumor dynamics by means of a modified Gompertz diffusion process. Albano G; Giorno V; Román-Román P; Román-Román S; Torres-Ruiz F J Theor Biol; 2015 Jan; 364():206-19. PubMed ID: 25242298 [TBL] [Abstract][Full Text] [Related]
3. A stochastic model of cancer growth subject to an intermittent treatment with combined effects: reduction in tumor size and rise in growth rate. Spina S; Giorno V; Román-Román P; Torres-Ruiz F Bull Math Biol; 2014 Nov; 76(11):2711-36. PubMed ID: 25344426 [TBL] [Abstract][Full Text] [Related]
4. On the therapy effect for a stochastic growth Gompertz-type model. Albano G; Giorno V; Román-Román P; Torres-Ruiz F Math Biosci; 2012 Feb; 235(2):148-60. PubMed ID: 22142644 [TBL] [Abstract][Full Text] [Related]
5. Inference on an heteroscedastic Gompertz tumor growth model. Albano G; Giorno V; Román-Román P; Román-Román S; Serrano-Pérez JJ; Torres-Ruiz F Math Biosci; 2020 Oct; 328():108428. PubMed ID: 32712317 [TBL] [Abstract][Full Text] [Related]
6. Inferring the effect of therapy on tumors showing stochastic Gompertzian growth. Albano G; Giorno V; Román-Román P; Torres-Ruiz F J Theor Biol; 2011 May; 276(1):67-77. PubMed ID: 21295592 [TBL] [Abstract][Full Text] [Related]
7. A stochastic model in tumor growth. Albano G; Giorno V J Theor Biol; 2006 Sep; 242(2):329-36. PubMed ID: 16620871 [TBL] [Abstract][Full Text] [Related]
8. Stochastic Gompertz model of tumour cell growth. Lo CF J Theor Biol; 2007 Sep; 248(2):317-21. PubMed ID: 17555768 [TBL] [Abstract][Full Text] [Related]
9. A new Gompertz-type diffusion process with application to random growth. Gutiérrez-Jáimez R; Román P; Romero D; Serrano JJ; Torres F Math Biosci; 2007 Jul; 208(1):147-65. PubMed ID: 17275859 [TBL] [Abstract][Full Text] [Related]
10. Optimal minimum variance-entropy control of tumour growth processes based on the Fokker-Planck equation. Sargolzaei M; Latif-Shabgahi G; Afshar M IET Syst Biol; 2020 Dec; 14(6):368-379. PubMed ID: 33399100 [TBL] [Abstract][Full Text] [Related]
11. Modeling tumor growth in the presence of a therapy with an effect on rate growth and variability by means of a modified Gompertz diffusion process. Román-Román P; Román-Román S; Serrano-Pérez JJ; Torres-Ruiz F J Theor Biol; 2016 Oct; 407():1-17. PubMed ID: 27449789 [TBL] [Abstract][Full Text] [Related]
12. A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth. d'Onofrio A; Fasano A; Monechi B Math Biosci; 2011 Mar; 230(1):45-54. PubMed ID: 21232543 [TBL] [Abstract][Full Text] [Related]
13. Near-criticality underlies the behavior of early tumor growth. Remy G; Cluzel P Phys Biol; 2016 Apr; 13(2):026005. PubMed ID: 27043180 [TBL] [Abstract][Full Text] [Related]
14. First passage time problem for a drifted Ornstein-Uhlenbeck process. Madec Y; Japhet C Math Biosci; 2004 Jun; 189(2):131-40. PubMed ID: 15094316 [TBL] [Abstract][Full Text] [Related]
15. A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization. Waliszewski P Biosystems; 2005 Oct; 82(1):61-73. PubMed ID: 16024163 [TBL] [Abstract][Full Text] [Related]
16. Finite element approximation of a population spatial adaptation model. Galiano G; Velasco J Math Biosci Eng; 2013 Jun; 10(3):637-47. PubMed ID: 23906141 [TBL] [Abstract][Full Text] [Related]
17. Spatial stochastic models for cancer initiation and progression. Komarova NL Bull Math Biol; 2006 Oct; 68(7):1573-99. PubMed ID: 16832734 [TBL] [Abstract][Full Text] [Related]
18. First-passage-time problem for simulated stochastic diffusion processes. Lánský P; Lánská V Comput Biol Med; 1994 Mar; 24(2):91-101. PubMed ID: 8026178 [TBL] [Abstract][Full Text] [Related]
19. Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. Konukoglu E; Clatz O; Menze BH; Stieltjes B; Weber MA; Mandonnet E; Delingette H; Ayache N IEEE Trans Med Imaging; 2010 Jan; 29(1):77-95. PubMed ID: 19605320 [TBL] [Abstract][Full Text] [Related]
20. A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data. Román-Román P; Romero D; Torres-Ruiz F J Theor Biol; 2010 Mar; 263(1):59-69. PubMed ID: 20018193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]