These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23347974)
21. Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. McCulloh KA; Johnson DM; Meinzer FC; Voelker SL; Lachenbruch B; Domec JC Plant Cell Environ; 2012 Jan; 35(1):116-25. PubMed ID: 21895699 [TBL] [Abstract][Full Text] [Related]
22. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Eggemeyer KD; Awada T; Harvey FE; Wedin DA; Zhou X; Zanner CW Tree Physiol; 2009 Feb; 29(2):157-69. PubMed ID: 19203941 [TBL] [Abstract][Full Text] [Related]
23. Linking hydraulic conductivity and photosynthesis to water-source partitioning in trees versus seedlings. Drake PL; Froend RH; Franks PJ Tree Physiol; 2011 Jul; 31(7):763-73. PubMed ID: 21813518 [TBL] [Abstract][Full Text] [Related]
24. Branch junctions and the flow of water through xylem in Douglas-fir and ponderosa pine stems. Schulte PJ; Brooks JR J Exp Bot; 2003 Jun; 54(387):1597-605. PubMed ID: 12730265 [TBL] [Abstract][Full Text] [Related]
25. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Ford CR; McGuire MA; Mitchell RJ; Teskey RO Tree Physiol; 2004 Mar; 24(3):241-9. PubMed ID: 14704134 [TBL] [Abstract][Full Text] [Related]
26. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration. Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583 [TBL] [Abstract][Full Text] [Related]
27. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. Johnson DM; McCulloh KA; Meinzer FC; Woodruff DR; Eissenstat DM Tree Physiol; 2011 Jun; 31(6):659-68. PubMed ID: 21724585 [TBL] [Abstract][Full Text] [Related]
28. Stem water transport of Lithocarpus edulis, an evergreen oak with radial-porous wood. Hirose S; Kume A; Takeuchi S; Utsumi Y; Otsuki K; Ogawa S Tree Physiol; 2005 Feb; 25(2):221-8. PubMed ID: 15574403 [TBL] [Abstract][Full Text] [Related]
29. The impacts of water stress on phloem transport in Douglas-fir trees. Woodruff DR Tree Physiol; 2014 Jan; 34(1):5-14. PubMed ID: 24336611 [TBL] [Abstract][Full Text] [Related]
30. Radial profiles of sap flow with increasing tree size in maritime pine. Delzon S; Sartore M; Granier A; Loustau D Tree Physiol; 2004 Nov; 24(11):1285-93. PubMed ID: 15339738 [TBL] [Abstract][Full Text] [Related]
31. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Zhang YJ; Meinzer FC; Qi JH; Goldstein G; Cao KF Plant Cell Environ; 2013 Jan; 36(1):149-58. PubMed ID: 22715809 [TBL] [Abstract][Full Text] [Related]
32. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Woodruff DR; McCulloh KA; Warren JM; Meinzer FC; Lachenbruch B Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534 [TBL] [Abstract][Full Text] [Related]
33. Resin duct size and density as ecophysiological traits in fire scars of Pseudotsuga menziesii and Larix occidentalis. Arbellay E; Stoffel M; Sutherland EK; Smith KT; Falk DA Ann Bot; 2014 Oct; 114(5):973-80. PubMed ID: 25122653 [TBL] [Abstract][Full Text] [Related]
34. Radial and vertical distributions of radiocesium in tree stems of Pinus densiflora and Quercus serrata 1.5 y after the Fukushima nuclear disaster. Ohashi S; Okada N; Tanaka A; Nakai W; Takano S J Environ Radioact; 2014 Aug; 134():54-60. PubMed ID: 24661964 [TBL] [Abstract][Full Text] [Related]
35. Hydraulic and anatomical properties of light bands in Norway spruce compression wood. Mayr S; Bardage S; Brändström J Tree Physiol; 2006 Jan; 26(1):17-23. PubMed ID: 16203710 [TBL] [Abstract][Full Text] [Related]
36. Defining how aging Pseudotsuga and Abies compensate for multiple stresses through multi-criteria assessment of a functional-structural model. Kennedy MC; Ford ED; Hinckley TM Tree Physiol; 2010 Jan; 30(1):3-22. PubMed ID: 19945994 [TBL] [Abstract][Full Text] [Related]
37. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae). Nagai S; Utsumi Y Am J Bot; 2012 Sep; 99(9):1553-61. PubMed ID: 22917949 [TBL] [Abstract][Full Text] [Related]
38. Photosynthetic phenological variation may promote coexistence among co-dominant tree species in a Madrean sky island mixed conifer forest. Potts DL; Minor RL; Braun Z; Barron-Gafford GA Tree Physiol; 2017 Sep; 37(9):1229-1238. PubMed ID: 28938055 [TBL] [Abstract][Full Text] [Related]
39. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. James SA; Clearwater MJ; Meinzer FC; Goldstein G Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724 [TBL] [Abstract][Full Text] [Related]
40. Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Watanabe Y; Satomura T; Sasa K; Funada R; Koike T Plant Cell Environ; 2010 Jul; 33(7):1101-11. PubMed ID: 20199624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]