BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23348122)

  • 1. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base.
    Doyle RL; Lyons ME
    Phys Chem Chem Phys; 2013 Apr; 15(14):5224-37. PubMed ID: 23348122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.
    Lyons ME; Doyle RL; Brandon MP
    Phys Chem Chem Phys; 2011 Dec; 13(48):21530-51. PubMed ID: 22068318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox switching and oxygen evolution electrocatalysis in polymeric iron oxyhydroxide films.
    Lyons ME; Brandon MP
    Phys Chem Chem Phys; 2009 Apr; 11(13):2203-17. PubMed ID: 19305893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of oxygen reduction in a protic ionic liquid.
    Walsh DA; Ejigu A; Smith J; Licence P
    Phys Chem Chem Phys; 2013 May; 15(20):7548-54. PubMed ID: 23584277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Rules for Oxygen Evolution Catalysis at Porous Iron Oxide Electrodes: A 1000-Fold Current Density Increase.
    Haschke S; Pankin D; Petrov Y; Bochmann S; Manshina A; Bachmann J
    ChemSusChem; 2017 Sep; 10(18):3644-3651. PubMed ID: 28745440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-electron transport and transfer in electrocatalytic films. Application to a cobalt-based O2-evolution catalyst.
    Bediako DK; Costentin C; Jones EC; Nocera DG; Savéant JM
    J Am Chem Soc; 2013 Jul; 135(28):10492-502. PubMed ID: 23822172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes.
    Seley D; Ayers K; Parkinson BA
    ACS Comb Sci; 2013 Feb; 15(2):82-9. PubMed ID: 23298465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption and electrochemical properties of cobalt and iron phthalocyanines and their quaternized derivatives: aggregation equilibrium and oxygen reduction electrocatalysis.
    Tasso TT; Furuyama T; Kobayashi N
    Inorg Chem; 2013 Aug; 52(16):9206-15. PubMed ID: 23914935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved niobate nanoscroll photocatalysts for partial water splitting.
    Townsend TK; Sabio EM; Browning ND; Osterloh FE
    ChemSusChem; 2011 Feb; 4(2):185-90. PubMed ID: 21246751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-iron oxide core-shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media.
    Hudson R; Rivière A; Cirtiu CM; Luska KL; Moores A
    Chem Commun (Camb); 2012 Apr; 48(27):3360-2. PubMed ID: 22363939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
    Gong M; Li Y; Wang H; Liang Y; Wu JZ; Zhou J; Wang J; Regier T; Wei F; Dai H
    J Am Chem Soc; 2013 Jun; 135(23):8452-5. PubMed ID: 23701670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting.
    Fominykh K; Chernev P; Zaharieva I; Sicklinger J; Stefanic G; Döblinger M; Müller A; Pokharel A; Böcklein S; Scheu C; Bein T; Fattakhova-Rohlfing D
    ACS Nano; 2015 May; 9(5):5180-8. PubMed ID: 25831435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst.
    Surendranath Y; Lutterman DA; Liu Y; Nocera DG
    J Am Chem Soc; 2012 Apr; 134(14):6326-36. PubMed ID: 22394103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards alternatives to anodic water oxidation: basket-handle thiolate Fe(III) porphyrins for electrocatalytic hydrocarbon oxidation.
    Li P; Alenezi K; Ibrahim SK; Wright JA; Hughes DL; Pickett CJ
    ChemSusChem; 2012 Dec; 5(12):2361-75. PubMed ID: 22945754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Parameters of Electrocatalytic Water Oxidation on LiMn
    Köhler L; Ebrahimizadeh Abrishami M; Roddatis V; Geppert J; Risch M
    ChemSusChem; 2017 Nov; 10(22):4479-4490. PubMed ID: 28921902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of a ferric hydroperoxide complex during the non-heme iron catalysed oxidation of alkenes and alkanes by O2.
    He Y; Goldsmith CR
    Chem Commun (Camb); 2012 Nov; 48(85):10532-4. PubMed ID: 22992783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman and electrocatalytic behavior of thiolate and imidazole bound iron porphyrin complexes on self assembled monolayers: functional modeling of cytochrome P450.
    Sengupta K; Chatterjee S; Samanta S; Bandyopadhyay S; Dey A
    Inorg Chem; 2013 Feb; 52(4):2000-14. PubMed ID: 23356644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.